MA3466 Tutorial Sheet 4^{1}

26 Febuary 2010

1. (C\&T 2.16) Bottleneck. Given a Markov chain $X_{1} \rightarrow X_{2} \rightarrow X_{3}$ where the sets of outcomes have cardinalities $\left|\mathcal{X}_{1}\right|=n,\left|\mathcal{X}_{2}\right|=k$ and $\left|\mathcal{X}_{3}\right|=m$ with k is less than both m and n.
(a) Show that the dependence of X_{1} and X_{3} is limited by the bottleneck by proving that $I\left(X_{1} ; X_{3}\right) \leq \log k$.
(b) Evaluate $I\left(X_{1} ; X_{3}\right)$ for $k=1$ and conclude that no dependence can survive such a bottleneck.
2. Consider the game of $\&{ }^{\mathrm{TM}}$: a board game with numbered squares, the idea being to race your token along the square by flipping a coin, heads you advance one place, tails you stay put. Let Y_{1}, Y_{2} and Y_{3} be you position after one, two and three turns. Clearly $Y_{1} \rightarrow Y_{2} \rightarrow Y_{3}$, show this by calculating the conditional probabilites and showing

$$
\begin{equation*}
p(x, y, z)=p(x) p(x \mid y) p(z \mid y) \tag{1}
\end{equation*}
$$

Calculate $I\left(Y_{1} ; Y_{2}\right)$ and $I\left(Y_{1} ; Y_{3}\right)$.
3. (C\&T 2.43b) A fair six-sided dice is rolled. What is the mutual information between the top face of the dice and the side most facing you?
4. (C\&T 2.29) For random variables X, Y and Z prove the following inequalities and find conditions for equality.
(a) $H(X, Y \mid Z) \geq H(X \mid Z)$
(b) $I(X, Y ; Z) \geq I(X ; Z)$
(c) $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$
(d) $I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)$

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

