MA3466 Tutorial Sheet 3^{1}

12 Febuary 2010

1. (C\&T 2.2) Entropy of functions. Let X be a random variable taking on a finite number of values. What is the general inequality relating $H(X)$ and $H(Y)$ if
(a) $Y=2^{X}$
(b) $Y=\cos X$
2. (C\&T 2.4) Entropy of functions of a random variable. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps

$$
\begin{align*}
H(X, g(X)) & =H(X)+H(g(X) \mid X) \\
& =H(X) \\
H(X, g(X)) & =H(g(X))+H(X \mid g(X)) \geq H(g(X)) \tag{1}
\end{align*}
$$

and hence $H(g(X)) \leq H(X)$.
3. (C\&T 2.8) Drawing with and without replacement. An urn contains r red, w white and b black balls. Which has higher entropy, drawing $k \geq 2$ balls from the urn with replacement or without replacement?
4. (C\&T 2.14) Enropy of a sum. Let X and Y be random variables that take on values $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{s}$ respectively. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X and Y are independent then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables add uncertainy.
(b) Give an example of random variables for which $H(X)>H(Z)$ and $H(Y)>$ $H(Z)$.
(c) Under what conditions does $H(Z)=H(X)+H(Y)$.

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ ${ }^{\text {h }}$ houghton/MA3466

