## MA3466 Tutorial Sheet $2^{1}$

## 5 Febuary 2010

1. (C\&T 2.6) Find joint random variables $X, Y$ and $Z$ such that
(a) $I(X ; Y \mid Z)<I(X ; Y)$
(b) $I(X ; Y \mid Z)>I(X ; Y)$
2. (C\&T 2.7) Suppose that one has $n$ coins, among which there may or may not be one counterfeit coin. If there is a conterfeit coin it will weight either less or more than the other coins. The coins are weighed using a balance.
(a) Find an upper bound on the number of coins $n$ so that $k$ weighings will find the couinterfeit coin, if any, and correctly declare it to be heavier or lighter.
(b) What is the coin-weighing strategy for $k=3$ weighings and 12 coins/
3. (C\&T 2.9) Let $X_{1}$ and $X_{2}$ be discrete random variables drawn accorind to distributions $p_{1}$ and $p_{2}$ from their respective alphabets $\mathcal{X}_{1}=\{1,2, \ldots, m\}$ and $\mathcal{X}_{2}=$ $\{m+1, m+2, \ldots, n\}$. Let

$$
X= \begin{cases}X_{1} & \text { with probability } \alpha  \tag{1}\\ X_{2} & \text { with probability } 1-\alpha\end{cases}
$$

(a) Find $H(X)$ in terms of $H\left(X_{1}\right)$ and $H\left(X_{2}\right)$.
(b) Maximize over $\alpha$ to show that

$$
\begin{equation*}
2^{H(X)} \leq 2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)} \tag{2}
\end{equation*}
$$

4. (C\&T 2.12). Let $p(x, y)$ be given by $p(0,0)=p(0,1)=p(1,1)=1 / 3$ and $p(1,0)=0$. Find $H(X), H(Y), H(X \mid Y), H(Y \mid X), H(X, Y), H(Y)-H(Y \mid X)$ and $I(X ; Y)$.
5. Prove the equals part of Jensen's inequality: if $f$ is stricly cup-like on an interval which includes all outcomes

$$
\begin{equation*}
\langle f(X)\rangle=f(\langle X\rangle) \tag{3}
\end{equation*}
$$

if and only if $X=\langle X\rangle$ with probability one.

[^0]
[^0]:    ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

