MA3466 Tutorial Sheet 1^{1}

29 January 2010

1. For two random variables with numerical outcomes, find $p(x, y)$ so that there is zero correllation

$$
\begin{equation*}
\left\langle x^{\prime} y^{\prime}\right\rangle=0 \tag{1}
\end{equation*}
$$

but X and Y aren't independent. $x^{\prime}=x-E X$ and $y^{\prime}=y-E Y$.
2. Work out the marginal distributions and the $x=a$ conditional distribution for

	a	b
1	$\frac{1}{3}$	$\frac{1}{6}$
2	0	$\frac{1}{4}$
3	$\frac{1}{8}$	$\frac{1}{8}$

3. (C\&T 2.1) A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
(a) Find the entropy $H(X)$ in bits. The following expressions may be useful:

$$
\begin{align*}
\sum_{n=0}^{\infty} r^{n} & =\frac{1}{1-r} \\
\sum_{n=0}^{\infty} n r^{n} & =\frac{r}{(1-r)^{2}} \tag{2}
\end{align*}
$$

(b) A random variable X is drawn according to this distribution. Find an efficient sequence of yes-no questions of the form, 'Is X contained in the set S ?'. Compare $H(X)$ to the expected number of questions required to determine X.
4. (C\&T 2.3) What is the minimum value of $H\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H(\mathbf{p})$ as \mathbf{p} ranges overall possible vectors. Find the \mathbf{p} which achieve this bound. $H\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is a common notation for $H(X)$ where X has n-outcomes $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $p_{1}=p\left(x_{1}\right)$, $p_{2}=p\left(x_{2}\right)$ and so on.

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466

