MA3466 Tutorial Sheet 1^1

29 January 2010

1. For two random variables with numerical outcomes, find p(x, y) so that there is zero correllation

$$\langle x'y'\rangle = 0\tag{1}$$

but X and Y aren't independent. x' = x - EX and y' = y - EY.

2. Work out the marginal distributions and the x = a conditional distribution for

	a	b
1	$\frac{1}{3}$	$\frac{1}{6}$
2	Ŏ	$\frac{1}{4}$
3	$\frac{1}{8}$	$\frac{\overline{1}}{8}$

- 3. (C&T 2.1) A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
 - (a) Find the entropy H(X) in bits. The following expressions may be useful:

$$\sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r}$$

$$\sum_{n=0}^{\infty} nr^{n} = \frac{r}{(1-r)^{2}}$$
(2)

- (b) A random variable X is drawn according to this distribution. Find an efficient sequence of yes-no questions of the form, 'Is X contained in the set S?'. Compare H(X) to the expected number of questions required to determine X.
- 4. (C&T 2.3) What is the minimum value of $H(p_1, p_2, \ldots, p_n) = H(\mathbf{p})$ as \mathbf{p} ranges overall possible vectors. Find the \mathbf{p} which achieve this bound. $H(p_1, p_2, \ldots, p_n)$ is a common notation for H(X) where X has n-outcomes $\{x_1, x_2, \ldots, x_n\}$ and $p_1 = p(x_1)$, $p_2 = p(x_2)$ and so on.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA3466