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21 November 2010

Questions

1. (2) Revise Fourier series and Parceval’s Theorem. Consider the Fourier expansion of
f(t)=t, —m<t<mwith f(t+27) = f(t) and use the result to show that
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Solution: So first of all
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since the integrand is odd. The other coefficients are given by
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Doing this by parts and using
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Now, we apply Parceval’s theorem, since
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Since there is an n? in the summand, the result is the same for the sum over negative

and over positive numbers, so
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!Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ houghton/MA22S3
2Including material from Chris Ford, to whom many thanks.



2. (2) Show that the Fourier transform of an even function is even, that is, if f(—t) =
J(t) then f(=k) = f(k).
Solution: Assume that f is even, that is f(—t) = f(¢), then
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make the change of variables s = —t:

(k)= 2 / T dsetp(os) = = / T ds e f(s) = F(R).
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3. (2) Use integration by parts to show that
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where we are using the notation
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Solution: So in - p
/mfty f(t)aé(t)dt (10)
let u = f(t) and dv = 8(t)dt so, by parts, we get
oo d o oo .
[, sargot = sasrs - [ sinata (1)

The first term on the right hand side is zero because the delta function is zero when
t # 0, we can evaluate the second term using the delta function, givng the answer.

4. (2) By substituting y = Ae™ and solving for r obtain the solution to § — 3y = 0, if
y(0) = 1 calculate the value of A.

Solution: If y = Ae™ then y = Are™ so the equation becomes
Are™ —3Ae™ =0 (12)

so cancelling the Ae™ we get r = 3. Now if y(t) = Ae® then y(0) = A, hence if
y(0) =1, A=1 and we get
y(t) = ¢” (13)



