MA22S3 Tutorial Sheet 8.¹²

16 December 2010.

Useful facts:

• Euler's eqn: use $t = \exp z$ to change

$$\alpha t^2 \ddot{y} + \beta \dot{y} + \gamma y = 0 \tag{1}$$

to

$$\alpha \frac{d^2 y}{dz^2} + (\beta - \alpha) \frac{dy}{dz} + \gamma y = 0$$
⁽²⁾

and then solve that as an example of a damped harmonic oscillator.

- Remember $e^{ab} = (e^a)^b$.
- Series solution: assume there is a solution of the form

$$y = \sum_{n=0}^{\infty} a_n t^n$$

and, by substituting into the equation find a recursion relation: an equation relating higher terms in a_n to lower one.

• By expanding out the sum it is easy to see $y(0) = a_0$ and $\dot{y}(0) = a_1$

Questions

- 1. (2) Solve $t^2\ddot{y} + 4t\dot{y} + 2y = 0$.
- 2. (2) Solve $x^2\ddot{y} + 4t\dot{y} + 2y = t^5$. In this example there is a forcing term, but substituting for t^5 in terms of z will just give a forced damped harmonic oscillator which can be solved then in the usual way.
- 3. (4) Assuming the solution of

$$(1-t)\dot{y} + y = 0 (3)$$

has a series expansion about t = 0 work out the recursion relation. Write out the first few terms and notice that the series $a_2 = 0$ so the series actually terminates to give $y = a_0(1-t)$. What is the solution with y(0) = 2.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.