MA22S3 Tutorial Sheet 6.¹²

25 November 2010

Useful facts:

• To solve the equation $\dot{y} + py = f$ multiply across by an integrating factor

$$\lambda(t) = e^{I(t)} = \exp\left(\int_{a}^{t} p(\tau)d\tau\right) \tag{1}$$

and express the right hand side as the derivative of a product.

• This gives solution

$$y(t) = y(a)e^{-I(t)} + e^{-I(t)} \int_{a}^{t} f(\tau)e^{I(\tau)}d\tau$$
(2)

• To solve the equation $a\ddot{y} + b\dot{y} + cy = 0$, with a, b and c constants, use an exponential substitution $y = \exp(\lambda t)$ and solve for λ . Usually this will give two solutions λ_1 and λ_2 so

$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} \tag{3}$$

Questions

- 1. (2) Obtain the solution to $\dot{y} 3y = e^{-t}$ with y(0) = 1; since an initial condition is chosen at t = 0, choose a = 0.
- 2. (2) Obtain a general solution to $(t+1)\dot{y} + y = (t+1)^2$
- 3. (2) Obtain the general solution to

$$\ddot{y} + \dot{y} - 2y = 0 \tag{4}$$

4. (2) Obtain the general solution to

$$\ddot{y} + 6\dot{y} + 8y = 0 \tag{5}$$

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3 ²Including material from Chris Ford, to whom many thanks.