MA22S3 Outline Solutions Tutorial Sheet 3.¹²

21 October 2009

Questions

1. (4) $f(t) = \cos t$ for $-\pi/2 < t < \pi/2$ and zero for $-\pi < t < -\pi/2$ and $\pi > t > \pi/2$. It is periodic with period 2π . What is the Fourier series.

Solution: So this is an even function and hence there is no need to work out the b_n . For a_0 integration gives

$$a_0 = \frac{1}{\pi} \int_{-\pi} \pi f(t) dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos t dt = \frac{2}{\pi}$$
(1)

for the a_n

$$a_n = \frac{1}{\pi} \int_{-\pi} \pi f(t) \cos nt dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos t \cos nt dt$$
(2)

because f(t) is zero for t between $-\pi$ and $-\pi/2$, and between $\pi/2$ and π . Now, we do the usual trick

$$\cos t \cos nt = \frac{1}{2} \left(\cos (n+1)t + \cos (n-1)t \right)$$
 (3)

Hence, integrating

$$a_n = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos t \cos nt dt = \frac{1}{2\pi} \left[\frac{\sin(n+1)t}{n+1} + \frac{\cos(n-1)t}{n-1} \right]_{-\pi/2}^{\pi/2}$$
(4)

Next, we can use the usual trignometric identities, or the graph, to see

$$\sin \frac{(n+1)\pi}{2} = \cos n\pi/2 \sin \frac{(n-1)\pi}{2} = -\cos n\pi/2$$
(5)

to get

$$a_n = -\frac{1}{\pi} \frac{\cos n\pi/2}{n^2 - 1} \tag{6}$$

Now, by examining a graph, it is easy to see $\cos n\pi/2$ is zero for n odd, if n is even it is equal to $(-1)^{n/2}$

$$f(t) = \frac{1}{\pi} - \frac{1}{\pi} \sum_{n \text{ even}} \frac{(-1)^{n/2}}{n^2 - 1} \cos nt$$
(7)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3 ²Including material from Chris Ford, to whom many thanks.

- 2. (2) What is the period of $\sin^2 t$ and $\sin^3 t$. Solution: Since $\sin t$ has period 2π , so does $\sin^3 t$, however $\sin^2 t$ has period π since it $(-\sin t)^2 = \sin^2 t$.
- 3. (2) Find the Fourier series for $\sin^3 t$; a quick way to do this is to regard it as a trigonometry problem, rather than a Fourier series problem, that is use the trigonometric identities to express it in terms of sines and cosines, rather than doing all the integrals: so start by writing $\sin^3 t = \sin^2 t \sin t$ and then write $\sin^2 t$ in terms of $\cos 2t$.

Solution: Using trig identities

$$\sin^3 t = \sin^2 t \sin t = \frac{1}{2} (1 - \cos 2t) \sin t \tag{8}$$

and again use the trig identity for $\cos 2t \sin t$ to give

$$\sin^3 t = -\frac{1}{4}\sin 3t + \frac{3}{4}\sin t \tag{9}$$

In other words, $b_1 = 3/4$ and $b_3 = -1/4$ and all the others are zero.