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Questions

1. (3) Use the recursion relation

a
n+2 =

2(n − α)a
n

(n + 1)(n + 2)

to obtain polynomial solutions of Hermite’s equation ÿ − 2tẏ + 2αy = 0 for α = 3
and 4.

Solution: So this is just a question of turning the handle on the recursion formula.
Now, the important point is that only one of the two series is a polynomial: what you
are asked for here is the polynomial solution. A polynomial is a terminating series,
it doesn’t go off to infinity and the recursion terminates because of the n − α in the
numerator, of course, for α even this gives zero for an even n and for α odd, for an
odd n. Thus, for α = 3 it is the odd series that terminates, so we start with a0 = 0
to get the odd series, a1 is arbitrary and n = 1 gives

a3 =
2(1 − 3)

(1 + 1)(1 + 2)
a1 = −

2

3
a1 (1)

and n = 3 has 3 − 3 = 0 in the numerator, so a5 = 0 and the polynomial is

y(t) = a1

(

t −
2

3
t3

)

(2)

Similarly, for α = 4 it is the even series that terminates, so a0 is arbitrary, a1 = 0
and, using n = 0

a2 =
−8

2
a0 = −4a0 (3)

and, using n = 2

a4 = −

4

12
a2 =

4

3
a0 (4)

Finally, n = 4 has zero in the numerator, giving a6 = 0 and

y(t) = a0

(

1 − 4t2 +
4

3
t4

)

(5)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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2. (5) Use the method of Frobenius to obtain the general solution to the ODE

tÿ + 2ẏ + ty = 0.

Solution: So, since we are told to use the method of Froebenius, we substitute

y =

∞
∑

n=0

a
n
xn+r (6)

Even if you weren’t told this was a method of Froebenius problem, you would soon
find that the ordinary method doesn’t give two solutions. Alternatively, you could
notice that if you write the equation so nothing multiplies y′′ you have coefficients
with singularities, that is in this case, the 2/x multiplying y′.

Now, substituting into the equation gives

∞
∑

n=0

[(n + r)(n + r − 1) + 2(n + r)]a
n
tn+r−1 +

∞
∑

n=0

a
n
tn+r+1 = 0. (7)

so, moving the first power up to the second one, this gives

∞
∑

n=−2

[(n + 2 + r)(n + r + 1) + 2(n + r + 2)]a
n+2t

n+r+1 +

∞
∑

n=0

a
n
tn+r+1 = 0 (8)

or, taking the first two terms out

r(r + 1)a0t
r−1 + (r + 1)(r + 2)a1t

r +
∞

∑

n=0

[(n + 2 + r)(n + r + 3)]a
n+2t

n+r+1 +

∞
∑

n=0

a
n
tn+r+1 = 0. (9)

So, if r = 0 or r = −1 then there is no constraint on a0. Notice that r = −1 allows
two solutions because, if r = −1 there is no equation for either a0 or a1. For r = −1
the recursion is

a
n+2 =

1

(n + 1)(n + 2)
(10)

so the first few non-zero terms are

y =
1

t

[

a0

(

1 +
1

2
t2 +

1

24
t4 + . . .

)

+ a1

(

t +
1

6
t3 . . .

)]

(11)

For r = 0 the recursion is

a
n+2 =

1

(n + 2)(n + 3)
(12)

and a1 = 0, this means that the r = 0 solution is

y = a0

(

1 +
1

6
t2 + . . .

)

(13)
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Notice that the r = 0 solution is actually just the a1 solution for r = −1. This is
just as well because there would be too many solutions otherwise: the recommended
approach is to take both a0 solutions. Notice the subtle way the method of Froebenius
problems often work out. There is quite a lot to this subject we have only touched
on.
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