MA22S3 Tutorial Sheet 1. Outline solns.¹

7 October 2009

Questions

1. (2) Establish that

$$\int_{-\pi}^{\pi} dt \sin mt \cos nt = 0 \tag{1}$$

for integers n and m.

Solution: This is an exercise in trigonometry and uses first the trignometric identity

$$\int_{-\pi}^{\pi} dt \sin mt \cos nt = \frac{1}{2} \int_{-\pi}^{\pi} dt \left[\sin (n - m)t - \sin (n + m)t \right] = 0$$
 (2)

and then the fact that the integral of a trignometric function over its whole period is zero. This fact is used a lot; take sine for example, and let N be an integer. Consider

$$I = \int_{-\pi}^{\pi} \sin Nt dt \tag{3}$$

Let s = Nt so ds = Ndt and when $t = \pi$ then $s = N\pi$ and $t = -\pi$ then $s = -N\pi$. Hence

$$I = \frac{1}{N} \int_{-N\pi}^{N\pi} \sin t dt \tag{4}$$

and then, if N is an integer, periodicity gives

$$I = \int_{-\pi}^{\pi} \sin t dt = -\cos \pi + \cos \pi = 0 \tag{5}$$

The exception is n = m in which case the first term is just zero.

2. (2) Establish that

$$\int_{-\pi}^{\pi} dt \sin mt \sin nt = 0, \tag{6}$$

if $m \neq n$ (both m and n are positive integers). What happens when m = n? By the way, the same story holds for $\int_{-\pi}^{\pi} dx \cos mt \cos nt$ but you need not do that one for this problem sheet.

Solution: This is almost the same

$$\int_{-\pi}^{\pi} dt \sin mt \sin nt = \frac{1}{2} \int_{-\pi}^{\pi} dt \left[\cos (n-m)t - \cos (n+m)t \right] = 0$$
 (7)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3

and then the fact that the integral of a trignometric function over its whole period is zero. The exception is n = m in which case the first term is one and so we get

$$\int_{-\pi}^{\pi} dt \sin mt \sin nt = \frac{1}{2} \int_{-\pi}^{\pi} dt = \pi$$
 (8)

3. (2) Show by checking whether f(t) = -f(-t) for odd, f(t) = f(-t) for even and neither for neither which of the following are odd, even or neither: $\sin t$, $t^3 + t$, $t^3 + 2t^2$ and |t|.

Solution:

$$\sin(-t) = -\sin t
(-t)^3 + (-t) = -(t^3 + t)
(-t)^3 + 2(-t)^2 = -t^3 + t^2
|-t| = |t|$$
(9)

so odd, odd, neither, even, respectively.

4. (2) What is the period of $\sin(2\pi t/L)$ and $\cos(2\pi t/L)$?

Solution:

$$\sin\frac{2\pi(t+L)}{L} = \sin\left(\frac{2\pi t}{L} + 2\pi\right) = \sin\frac{2\pi t}{L} \tag{10}$$

and any smaller number would not have worked, the cosine works the same way. Or put another way, if

$$f(t) = \sin \frac{2\pi(t)}{L} \tag{11}$$

then

$$f(t+T) = \sin\frac{2\pi(t+T)}{L} = \sin\left(\frac{2\pi t}{L} + \frac{2\pi T}{L}\right) \tag{12}$$

and since $\sin (\theta + 2\pi) = \sin \theta$, we have f(t+T) = f(t) provided T = L.