MA22S3 Tutorial Sheet 5.12

5 November 2009

Useful facts:

• Cosine and sine in terms of exponentials:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
(1)

• The **Fourier integral** or Fourier transform:

$$f(t) = \int_{-\infty}^{\infty} dk \, \widetilde{f(k)} e^{ikt}$$
$$\widetilde{f(k)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, f(t) e^{-ikt}$$

• The Dirac delta function:

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$$

Questions

1. (4) Express the following function as a Fourier integral:

$$f(x) = \begin{cases} \cos t & |t| < \frac{\pi}{2} \\ 0 & |t| > \frac{\pi}{2} \end{cases}$$

One way to do the required integral is to split the cosine into exponentials.

2. (4) Do the following integrals

(a)
$$\int_{-\infty}^{\infty} \delta(t)(t^2 + 3t + 5)dt \tag{2}$$

(b)
$$\int_{-\infty}^{\infty} \delta(t - \pi/4) \sin t dt \tag{3}$$

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3 ²Including material from Chris Ford, to whom many thanks.

(c)
$$\int_{-\infty}^{\infty} \delta(t-1) \ln t dt$$
 (4)

(d)
$$\int_{-3}^{3} \delta(t-4)(t^2+3t+5)dt \tag{5}$$