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Euclidean vector spaces have another important structure beyond the linear structure
captured by the definition of a vector space: this is the dot product or scalar product. For
two Euclidean vectors u and v the dot product is

u · v = |u||v| cos θ (1)

where θ is the angle between u and v. We know that if u = (u1, u2, u3) and v = (v1, v2, v3)
then

u · v = u1v1 + u2v2 + u3v3 (2)

The definition of the inner product generalizes this structure. Since the dot in dot product
is specific to Euclidean vectors, a new notation is needed for the general case, several are
used, here we will use the Dirac notation.

• For a real vector space V an inner product is a map from pairs of vectors to real
numbers

〈 | 〉 : V × V → R

(u, v) 7→ 〈u|v〉 (3)

satisfying,

1. Symmetry: 〈u|v〉 = 〈v|u〉.
2. Bilinearity: 〈λ1u1 + λ2u2|v〉 = λ1〈u1|v〉 + λ2〈u2|v〉 for u1, u2 and v in V and λ1

and λ2 in R and 〈u|λ1v1 +λ2v2〉 = λ1〈u|v1〉+λ2〈u|v2〉 for u, v1 and v2 in V and
λ1 and λ2 in R.

3. Positive-definiteness: 〈u|u〉 ≥ 0 with 〈u|u〉 = 0 only when u = 0.

A real inner product space is a real vector space with an inner product.

It is easy to check in the case of the component-wise definition of the dot-product that
it is an inner product. It is harder to check with the non-component definition, |u||v| cos θ,
but can be done. The third condition is important, it expresses what makes the dot product
different from general bilinear symmetric maps: the dot product of a vector with itself is
the length squared: u · u = |u|2. More generally the notation

‖u‖ =
√

〈u|u〉 (4)

and ‖u‖ is a norm.
The dot product also allow us to say when two vectors are at right angles, for non-zero

vectors u · v = 0 only if θ, the included angle, is π/2. This generalizes to inner product
spaces.
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• Two vectors u and v in an inner product space are orthogonal if 〈u|v〉 = 0.

• A set of vectors {u1, u2, . . . , ur} is called orthogonal if every pair of vectors in it
orthogonal: 〈ui|uj〉 = 0 for each i 6= j. The set is orthonormal if it is orthogonal
and all the vectors have norm one: 〈ui|ui〉 = 1 for all i. This can be written as
〈ui|uj〉 = δij where we have used the Kronecker delta:

δij =

{

1 i = j
0 i 6= j

(5)

Now, in R the usual orthonormal basis is {i, j,k}, but this isn’t unique, rotations give
other sets, so, for exaple, {(i + j)/

√
2, (i − j)/

√
2,k} is also orthonormal. In a finite-

dimensional vector spaces any basis set can be used to construct an orthonormal basis.
This can be done using an algorithm called Gram-Schmidt orthonormalization: in short
every finite-dimensional vector space has an orthonormal basis.

One important thing about an orthonormal vector space is that you can use orthogonal

projection to work out components. For example, in R3 we know {i, j,k} is a orthonormal
basis set, so given a vector v we can write

v = v1i + v2j + v3k (6)

for some v1, v2 and v3; the question is what values do v1, v2 and v3 take? To work this out
we dot-product both sides by i to get

v · i = v1i · i + v2j · i + v3k · i (7)

Now, since i · i = 1 and j · i = k · i = 0 we get

v1 = v · i (8)

Dotting across by the other two basis vectors in a similar way gives v2 = v · j and v3 = v ·k.
Geometrically the dot-product corresponds to projection and so this process shows that
each of the components is equal to the projection of the vector onto the relevant direction.

It is useful to study this process in a slightly more general way: let {e1, e2, . . . , en} be
an orthonormal basis in n-dimensional Euclidean space. If v is a vector in this space

v =
n

∑

i=1

aiei (9)

Now, to calculate the ai’s we dot across by one of the basis vectors, say ej:

v · ej =
n

∑

i=1

aiei · ej (10)
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Next, using ei · ej = δij which follows from the orthonormality of the basis set,

v · ej =

n
∑

i=1

aiδij = aj (11)

so

v =
n

∑

i=1

(ei · v)ei (12)

So far, the only example of an inner product we have looked at is the dot product.
Obviously we are interested in an inner product for periodic functions and it is easy to
check that for the space of functions of period L, with some integrability condition, for two
such functions, f(t) and g(t),

〈f |g〉 =

∫ L/2

−L/2

fgdt (13)

is an inner product: again there are technical restrictions, positive definiteness requires
functions requires some sort of saneness requirement, requiring that the functions have at
most a finite number of discontinuities works. There is also a set of orthogonal vectors for
these functions provided by the sines and cosines

{1/2, cos 2πt/L, cos 4πt/L, cos 6πt/L, . . . , sin 2πt/L, sin 2πt/L, sin 4πt/L, sin 6πt/L, . . .}

Integrating shows that

∫ L/2

−L/2

cos
2πnt

L
cos

2πmt

L
=

L

2
δnm

∫ L/2

−L/2

sin
2πnt

L
sin

2πmt

L
=

L

2
δnm

∫ L/2

−L/2

cos
2πnt

L
sin

2πmt

L
= 0 (14)

for positive integers m and n; we will see that this orthonormal set gives us the Fourier
series.
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