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The vector spaces we are most familiar with are Euclidean vector space like R3; the set
of three-dimensional vectors. Our goal here is define abstractly the important structure
of these Euclidean vector space so that some of the important results from the theory of
Euclidean vector spaces can be applied in other examples, such as the example that will
be important to us here: periodic functions.

A vector space is a set with addition and scalar multiplication; the definition explains
what we mean by addition and scalar multiplication: it lists all the things that are impor-
tant about these operations. We also have to decide what scalars we have in mind when
we say scalar multiplications, for Euclidean vectors, the scalar is a real number, however,
that is an unnecessary restriction, it is possible to define vector spaces where the scalars
are complex numbers for example. It turns out that the important restriction is that the
scalars form a mathematical structure called a field; we won’t go into that here, suffice
to say that the real numbers R and the complex numbers C are both examples of fields.
Thus, we will give the definition of a vector space with a general field F, but, in practice we
will only look at real and complex vector spaces where F = R or, less commonly, F = C.

• A vector space over a field F is a set V with an addition operation:

u + v ∈ V (1)

for all u, v in V and a scalar multiplication,

λu ∈ V (2)

for u ∈ V and λ ∈ F. For all u, v and w in V and λ and µ in F, these operations
are required to satisfy

1. Symmetry: u + v = v + u.

2. Associativity: (u + v) + w = u + (v + w).

3. Two distributive laws: λ(u + v) = λu + λv and (λ + µ)u = λu + µu.

4. Identity: there exists an element 0 such that v + 0 = v.

5. Inverse: there exists an element −v such that v + (−v) = 0, of course, we write
u − v for u + (−v).

6. Compatibility: (λµ)u = λ(µu).

7. Identity for scalar multiplication: if 1 is the identity in F; 1u = u.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3.html
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The numbered niceness conditions just list the important properties that addition and
scalar multiplication have for Euclidean vectors; ensuring that a general vector space has
these same properties. Notice that it is important that not only is there an addition
operation, but that adding two vectors gives another vector in the set: we say that a
vector space is closed under addition. It is also closed under scalar multiplication.

It is easy to check that the space of, for example three-dimensional, Euclidean vectors
gives a vector space, for example, if u and v are in R3 so is u+v and, u+v = v+u. It is
this sort of finite-dimensional vector space that motivated the definition of a vector space
and which will provide the intuition we will need to deal with more complicated examples.

Another, maybe more surprising example, is given by periodic functions.

• A function f(t) is periodic if there exists an L such that for all t f(t + L) = f(t).
The smallest such an L is called the period.

Consider the set of all functions with period L. Now if f(t) and g(t) have periods L then
so does h(t) = f(t) + g(t):

h(t + L) = f(t + L) + g(t + L) = f(t) + g(t) = h(t) (3)

Similarly, if h(t) = af(t) for a ∈ R then h(t + L) = af(t + L) = af(t) = h(t) so this space
has closed addition and scalar multiplication operations. It would also be easy to check
that these operations also satisfy all the niceness conditions.

Thus, the space of functions of period L is another example of a vector space: we will
see that it differs in an important way from examples like R3 it is infinite dimensional. To
see what this means we need to first of all define dimension and to that we need to discuss
linear independence.

• For a vector space V a set of non-zero vectors {u1, uthatcanbeused2, . . . , un} is linearly

independent if the only way scalars λ1, λ2 up to λn give

λ1u1 + λ2u2 . . . λnun = 0 (4)

is λ1 = λ2 = . . . = λn = 0.

In other words a set is linearly independent if these are no non-trivial linear combinations
of the vectors that give zero. Now, in R3 the basis vectors i = (1, 0, 0), j = (0, 1, 0) and
k = (0, 0, 1) are linearly independent, but, say u = (1, 1, 0), v = (2, 2, 1) and w = (0, 0,−1)
are not linearly independent, because,

thatv − 2u + w = 0 (5)

Now, for many vector spaces there is a limit on how many vectors you can have in
a linearly independent set: take three-dimensional Euclidean space, R3 as an example
and take {i, j,k} as the linearly independent set. Now, say we have another vector v =
(v1, v2, v3), we know v − v1i − v2j− v3k = 0. This limit actually defines the dimension
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• If such a set exists, the dimension of a vector space is the maximal size of a linearly
independent set. Any linearly independent set of size equal the dimension is called a
basis.

Notice first the caveat if such a set exists; not all vector spaces have a finite dimension.
The word maximal here means something very similar to maximum, but it explicitly notes
that the maximum will be obtain in many instance: if there is a basis set it will not be
unique, for example along with {i, j,k}, the set {i + j, i − j,k} is a basis for R3.

Obviously, we think of a basis as a set of vectors as a set of vectors over which any other
vector can be decomposed. That idea is implicit in the definition above; say {u1, u2, . . . , un}
is a basis for some vector space V and v is any element in V . Now {u1, u2, . . . , un, v} have
more than n elements, but, by the definition of the basis, n is the dimension, so this set
must be linearly dependent; there exist non-trivial λ1 to λn+1 such that

λ1u1 + λ2u2 + . . . + λnun + λn+1v = 0 (6)

Moreover, since the set of ui’s is a basis, we know λn+1 6= 0; having zere λn+1 would
contradict the linear independence of the basis. Now, let ai = −λi/λn+1 for all i from one
to n. Dividing the equation by λn+1 and rearranging a small by gives

v = a1u1 + a2u2 + . . . + anun (7)

so the v can be written in terms of the ui.
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