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Part III: ODEs

A differential equation is an equation involving derivatives. An ordinary differential
equation (ODE) is a differential equation involving a function, or functions, of only one
variable. If the ODE involves the nth, and lower, derivatives it is said to be an nth order
ODE. Let y be a function of one variable t, for neatness, we will try to always use t as the
dependent variable and dot for derivative. An equation like

ẏy + sin ty = cos t (1)

is a first order ODE, we will see soon that it is not a linear ODE and we will only be
looking at linear ODEs, but, the important thing for what we are discussing here is that
the highest derivative is the ẏ.

ÿ + ẏy + sin ty = cos t (2)

is second order. A function satisfying the ODE is called a solution of the ODE.

Linear ODEs (2 types)

There are two types of linear ODEs

1. Homogeneous: If y1 and y2 are solutions so is Ay1 + By2 where A and B are
arbitrary constants.

2. Inhomogeneous: If y1 and y2 are solutions so is Ay1 + By2 where A + B = 1.

where, obviously, the point is in a homogeneous equation, all the terms are y terms, whereas
the inhomogeneous equation has an extra forcing term.

• Homogeneous example: The equation

ÿ + p(t)ẏ + q(t)y = 0 (3)

is homogeneous, where p(t) and q(t) are some, given, functions of t. Now substituting
Ay1 + By2 gives

d2

dt2
(Ay1+By2)+p

d

dt
(Ay1+By2)+q(Ay1+By2) = A(ÿ1+pẏ1+qy1)+B(ÿ2+pẏ2+qy2) = 0

(4)
when y1 and y2 are solutions.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Based partly on lecture notes taken by John Kearney
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• Inhomogeneous example: The equation

ÿ + p(t)ẏ + q(t)y = f(t) (5)

is homogeneous, where p(t), q(t) and f(t) are some, given, functions of t. Now
substituting Ay1 + By2 gives

d2

dt2
(Ay1+By2)+p

d

dt
(Ay1+By2)+q(Ay1+By2) = A(ÿ1+pẏ1+qy1)+B(ÿ2+pẏ2+qy2) = (A+B)f

(6)
when y1 and y2 are solutions. Hence Ay1 + By2 is a solution is A + B = 1.

In either case, the main point is that a linear ODE is one where there is some sort of
additive structure and, in a linear equation, there are no non-linear functions of y and its
derivatives, no y2 terms, or sin y terms or yẏ terms or anything like that.

The general first order linear ODE, for a single function, can be written

a(t)ẏ(t) + b(t)y(t) = f(t) (7)

where a(t), b(t) and f(t) are arbitrary functions. The equation is homogeneous if f = 0.
A common standard form is write the equation as

ẏ(t) + p(t)y(t) = f(t) (8)

where p = b/a and f/a has been renamed back to f .
The general second order linear ODE is

a(t)ÿ(t) + b(t)ẏ(t) + c(t)y(t) = f(t) (9)

where a(t), b(t), c(t) and f(t) are arbitrary functions and the equation is homogeneous if
f = 0. Again, another standard form is

ÿ(t) + p(t)ẏ(t) + q(t)y(t) = f(t) (10)

An nth order differential equation will have n independent solutions, so a first order
differential equation has one solution, meaning that there is one arbitrary constant, a
second order will have two, and so on. Often, initial conditions will fix the arbitrary
constants, so a first order equation needs one initial condition, the value of y(0) for example,
a second order differential equation needs two, the values of y(0) and ẏ(0) for example.

First order linear differential equations.

All solutions of
ẏ(t) + p(t)y(t) = f(t) (11)

can be written
y(t) = Cy1(t) + yp(t) (12)
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where y1(t) is a solution of the corresponding homogeneous equation

ẏ(t) + p(t)y(t) = 0 (13)

and yp(t) is any one solution of the full equation. Hence, once you can find one solution
to the problem, you can find the whole set of solutions, with the arbitrary constant, by
adding the solution to the corresponding homogeneous equation.

This can be demonstrated in this case by explicit construction. Let

ẏ(t) + p(t)y(t) = f(t) (14)

The trick is to multiply across by a function λ(t), called the integrating factor so the
we can rewrite the left hand side as a product. Hence, we want a λ so that

d

dt
(λy) = λẏ + λpy (15)

Doing the differentiation and matching up, we see that this means

λ̇ = pλ (16)

or, by integrating
lambda(t) = eI(t) (17)

where where

I(t) =

∫ t

a

p(z)dz. (18)

and a is an arbitrary constant, in fact the choice of a doesn’t alter the eventual solution,
changes of a are basically absorbed into a redefinition of the arbitrary constant.

Now, after multiplying across by the integrating factor, the differential equation can be
rewritten

d

dt
eI(t)y(t) = eI(t)f(t) (19)

Integrate from a to t

eI(t)y(t) − eI(a)y(a) =

∫ t

a

dzeI(z)f(z). (20)

with eI(a) = 1. This gives
y(t) = Cy1(t) + yp(t), (21)

with y1(t) = e−I(t), yp(t) = e−I(t)
∫ t

a
eI(z)f(z)dz and C = y(a). so

y(t) = y(0)e−I(t) + e−I(t)

∫ t

a

eI(z)f(z)dz (22)

In practise, this method will always find a solution, but, often, it is quicker just to stare at
the equation and then guess a solution and check it works, or to actually use the integrating
factor rather than just plugging stuff into the formula.
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• Example Find all solutions of the ODE 1

ẏ(t) +
1

t
y(t) = t3. (23)

Here p(t) = 1/t which has a non-integrable singularity at t = 0! Work with t > 0,
or t < 0. First, the integrating factor I(t) =

∫ t

a
p(z)dz = logt provided we set a = 1.

eI(t) = t so that the ODE can be written

d

dt
(ty) = t4. (24)

Integrating gives ty = 1
5
t5 + C or y = 1

5
t4 + C/t.

Second order case

All solutions, or the general solution of

ÿ(t) + p(t)ẏ(t) + q(t)y(t) = f(t) (25)

are given by
y(t) = C1y1(t) + C2y2(t) + yp(t) (26)

where y1, y2 are linearly independent solutions of the corresponding homogeneous equa-
tion

ÿ(t) + p(t)ẏ(t) + q(t)y(t) = 0 (27)

and yp(t) is a solution of the full equation. C1 and C2 are arbitrary constants. This isn’t
proved here, but it is easy to understand why it would be the case: this is a second order
equation so it nears to arbitrary constant, in the initial value problem, one matches y(0)
and the other ẏ(0). Now, if you have a solution, adding a solution of the corresponding
homogeneous problem gives you another solution and the homogeneous problem also has
a two-dimensional space of solutions, so it all matches up. yp(t) is called a particular
integral. The general solution is sometimes written

y(t) = yc(t) + yp(t) (28)

where yc(t) = C1y1(t) + C2y2(t) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.

Constant Coefficients

We now consider the special case where the coefficients a, b and c are constants

aÿ(t) + bẏ(t) + cy(t) = f(t). (29)

4



This type of equation has a nice interpretation as a damped/driven oscillator. y is the
displacement from equilibrium. Recall the equation for a simple harmonic oscillator

d2y(t)

dt2
= −ω2y(t) (30)

Now add in a damping force proportional to the velocity dy/dt and a driving force f(t),
which may be periodic or non-periodic,

d2y(t)

dt2
= −ω2y(t) − γ

dy(t)

dt
+ d(t) (31)

which is a linear ODE with constant coefficients.
So, back to the general constant coefficient form, the first step in solving ODEs of this

type is to find two solutions of the homogeneous equation

aÿ(t) + bẏ(t) + cy(t) = 0. (32)

This equation has simple exponential solutions of the form y(t) = eλt . Differentiating
ẏ(t) = λeλt and ÿ(t) = λ2eλt so that

aÿ(t) + bẏ + cy = (aλ2 + bλ + c)y (33)

which is zero provided
aλ2 + bλ + c = 0. (34)

This is called an auxiliary equation. Thus y1(t) = eλ1t and y2(t) = eλ2t where λ1 and λ2

are roots of the quadratic auxiliary equation. The complementary function, if λ1 6= λ2, is
yc(t) = C1e

λ1t + C2e
λ2t.

If λ1 = λ2 we only have one exponential solution. In this case a second solution of the
ODE is y(t) = teλ1t and yc(t) = C1e

λ1t + C2te
λ1t. In the oscillator model this special case

corresponds to critical damping. This trick is justified by the fact it works; there are ways
to derived it, for example, by converting the equation into two first order equations using
y1 = y and y2 = y′ and then diagonalizing the corresponding matrix equation and solving
using an integrating factor. In practise, the easiest thing is to keep adding powers of t until
you have two solutions.

You might wonder why teλ1 is a solution and why we don’t get a solution of this form
when there are two distinct solutions to the auxiliary equation. To see this, consider
substituting

y = teλ1t (35)

into the equation, we have
ẏ = eλ1t + λ1te

λ1t (36)

and
ÿ = 2λ1e

λ1t + λ2
1te

λ1t (37)
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so the equation becomes

a(2λ1e
λ1t + λ2

1te
λ1t) + b(eλ1t + λ1te

λ1t) + cteλ1t = 0 (38)

or
(aλ2

1 + bλ1 + c)teλ1t + (2aλ1 + b)eλ1 = 0 (39)

so this is a solution when aλ2
1 + bλ1 + c = 0, that is when λ1 satisfies the auxliary equation,

and when

λ1 = − b

2a
(40)

Now, if you look at the formula for solutions to the quadratic equation

λ =
−b ±

√
b2 − 4ac

2a
(41)

we see that −b/2a is a solution if an only if b2 = 4ac, which happens and only happens,
when there is only one solution.

• Example: ÿ+3ẏ+2y = 0 has auxiliary equation λ2+3λ+2 = 0 with roots λ1 = −1,
λ2 = −2 so the general solution is

y(t) = C1e
−t + C2e

−2t (42)

This corresponds to over damping.

• Example: ÿ + 2ẏ + y = 0 has auxiliary equation λ2 + 2λ + 1 = 0 with two equal
roots λ = −1 and so the general solution is

y(t) = (C1 + C2t)e
−t (43)

• Example: If the auxiliary equation λ2+λ+1 = 0 with complex roots λ = −1
2
± 1

2

√
3i

the general complex solution is

y(t) = C1e
− 1

2
t+i 1

2

√
3t + C2e

− 1

2
t−i 1

2

√
3t (44)

where C1 and C2 are complex constants. The general real solution can be obtained
by imposing the constraint C2 = C∗

1 :

y(t) = e−
1

2
t

[

C1

(

cos
1

2

√
3t + i sin cos

1

2

√
3t

)

+ C∗
1

(

cos
1

2

√
3t − i sin cos

1

2

√
3t

)]

(45)
Writing C1 = 1

2
(A − iB) where A and B are real constants gives

y(t) = e−
1

2
t

(

A cos
1

2

√
3t + B sin

1

2

√
3t

)

(46)

this is the underdamped case, it still oscillates.
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