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Fourier Analysis

The Fourier series

First some terminology: a function f(t) is periodic if f(t + L) = f(t) for all t for some L,
if L is the smallest such number, it is called the period of f(t). It is even if f(−t) = f(t),
for all t and odd if f(−t) = −f(t), again, for all t. sin t, cos t, sin 2t, sin 3t and so on are
examples of periodic functions: sin nt has period 2π/n; it is important to remember that
if f(t) = sin nt then f(t + 2π) = f(t), but the period is 2π/n since that is the smallest
number for which f(t + L) = f(t); 2π is a whole number of periods.

The idea is that this is a vector space like the space of Euclidean vectors and so a set
of basis functions should make it possible to decompose a periodic function over the basis.
In fact, a periodic function f(t) with period l can be decomposed as Fourier series

f(t) =
1

2
a0 +

∞
∑

n=1

an cos
2πnt

L
+

∞
∑

n=1

bn sin
2πnt

L
(1)

We will leave aside, for now, issues of whether the set

{1/2, cos 2π/L, cos 4π/L, cos 6π/L, . . . , sin 2π/L, sin 4π/L, sin 6π/L, . . . , } (2)

is a basis: in this context the issue is whether the series converge to the function and the
answer is pretty much. For now, we will calculate what values the an and bn must have.
First, integrating both sides gives

∫ L/2

−L/2

dtf(t) =
L

2
a0 +

∞
∑

n=1

an

∫ L/2

−L/2

dt cos
2πnt

L
+

∞
∑

n=1

bn

∫ L/2

−L/2

dt sin
2πnt

L
=

L

2
a0 (3)

where I have assumed I can bring the integrals into the sum signs, the sines and cosines
both integrate to zero: sine and cosine integrate to zero if integrated over a whole number
of periods and cos 2nπ/l and sin 2nπ/l have period l/n. This means that

a0 =
2

L

∫ L/2

−L/2

f(t)dt (4)

In fact, the method for calculating the other coefficients is not too different; we multiply
across by a sine or cosine and then integrate using the formulae

∫ L/2

−L/2

dt sin
2πmt

L
sin

2πnt

L
=

L

2
δmn
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∫ L/2

−L/2

dt cos
2πmt

L
cos

2πnt

L
=

L

2
δmn

∫ L/2

−L/2

dt sin
2πmt

L
cos

2πnt

L
= 0 (5)

which can be proved, for example, by writing the trigonometric functions in terms of
complex exponentials. This is really a statement of the orthogonality of the basis, and so
what we are doing is orthogonal projection, as is done for the Euclidean case.

Hence, multiplying across by cos 2πmt/l and integrating, we get

∫ L/2

−L/2

dtf(t) cos
2πmt

L
=

1

2

∫ L/2

−L/2

dta0 cos
2πmt

L

+

∞
∑

n=1

an

∫ L/2

−L/2

dt cos
2πnt

L
cos

2πmt

L

+

∞
∑

n=1

bn

∫ L/2

−L/2

dt sin
2πnt

L
cos

2πmt

L

=
L

2
am (6)

so, using this and a similar calculation for sine, we get

an =
2

L

∫ L/2

−L/2

dtf(t) cos
2πnt

L

bn =
2

L

∫ L/2

−L/2

dtf(t) sin
2πnt

L
(7)

where the first equation holds for n ≥ 0 and the second for n > 0. It is to have all the
an obey the same general expression that there is the convention to put the half is put in
front of the a0. As a point of terminology, the an and bn are called Fourier coefficients

and the sines and cosines, or sometimes the sines and cosine along with their coefficient,
are called Fourier modes.

• Example: Consider the block wave with period l = 2π

f(t) =

{

1 0 < t < π
−1 −π < t < 0

(8)

with f(t + 2π) = f(t).
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-1

−2π −π π 2π

So

an =
1

π

∫ L/2

−L/2

dtf(t) cos nt = 0 (9)

because the integrand is odd, and

bn =
1

π

∫ L/2

−L/2

dtf(t) sin nt =
2

π

∫ π

0

dt sin nt = −
2 cosnt

nπ

∣

∣

∣

∣

π

0

=
2

πn
[1 − (−1)n] (10)

where we have used cos nπ = (−1)n. Hence

f(t) =
4

π

∑

n odd

1

n
sin nt (11)

This series is not obviously convergent; the point of Fourier series is that there are
theorems to tell us it is. However, there are particular values of t where we can see
that the answer is correct, for example, at t = π/2, we have sin (2m + 1)π/2 = (−1)m

where m is an integer so 2m − 1 is odd. Putting this back into the series gives

1 =
4

π

(

1 −
1

3
+

1

5
−

1

7
+

1

9
. . .

)

(12)

and the right hand side can be derived by Taylor expanding tan−1 t. It is interesting
to note that the series as written, up to 1/9 gives 1 ≈ 1.06; the Fourier series gives
workable but not efficient approximations and its importance is not in its ability to
approximate functions with high numerical accuracy, rather, it quickly captures fea-
tures of the function, preserving its periodicity and encoding its behaviour at lengths
scales bigger than l/n, where n is where the series is truncated. Another interesting
thing to look at is the behaviour at t = 0 where the function is discontinuous. Since
all the sines are zero, the Fourier series gives zero at t = 0. This interpolates the
discontinuity. This is a feature of the Fourier series, the series does not see what hap-
pens at individual points and interpolates over any finite discontinuities. A graph of
the Fourier series is given in Note 3.

There are lots of versions of the theorem which tells us the Fourier series exists, different
versions impose different conditions on the function and have convergence properties for

3

the series; the version we quote is actually quite vague about the convergence and pretty
restrictive on the function and we will call it Dirichlet’s Theorem: If f is periodic and has,
in any period, a finite number of maxima and minima and a finite number of discontinuities

and
∫ L/2

−L/2
|f(t)|2dt is finite then the Fourier series converges and converges to f(t) at all

points where f(t) is continuous. At a point a where f(t) is discontinuous it converges to

1

2

[

lim
t→a+

f(t) + lim
t→a−

f(t)

]

(13)

One annoying thing about Dirichlet’s theorem, as quoted, is that it appears to exclude
the block wave used in the example, the block wave doesn’t have a finite number of maxima
and minima, obviously this isn’t the sort of function the statement is trying to exclude,
it is aimed at functions that oscillate infinitely fast. To fix it you could extend Dirichlet’s
theorem to functions f(t) such that there is a function g(t), satisfying the properties
described by the theorem, such that f(t)+g(t) has the properties required by the theorem.

Complex Fourier series

As often happens, apart from the slight inconvenience of being complex, complex Fourier
series are more straightforward than real ones, there is only once type of Fourier coefficient,
cn, instead of three, a0, an and bn for the real series. It is easy to see the existence of a
complex exponential series follows from the existence of the sine and cosine series, just
replace

cos t =
eit + e−it

2

sin t =
e−it − e−it

2i
(14)

For notational simplicity, we will concentrate on functions with period L = 2π. The
idea is to get a series of the form

f(t) =

∞
∑

n=−∞

cneint. (15)

Rather than try to work out the formula for the cn from the formulas for the an and bn,
we can just take this as a series for f(t) and calculate the cn by a similar trick to the one
we used before, we multiply across by exp(−imt) and integrate

∫ π

−π

dte−imtf(t) =

∞
∑

n=−∞

cn

∫ π

−π

ei(n−m)t (16)

and use
∫ π

−π

dtei(n−m)t = 2πδnm (17)
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which is clear if you note the integrand is one for n = m and otherwise, it is easy to see
from

eiθ = cos θ + i sin θ (18)

that it integrates to zero. This means that

cn =
1

2π

∫ π

−π

dtf(t)e−int (19)

It is interesting to ask what the consequence of f(t) being real is on the cn, using a
star to mean the complex conjugate lets take the complex conjugate of this equation, using
f ∗ (t) = f(t):

c∗n =
1

L

∫ π

−π

dtf(t)eint =
1

2π

∫ π

−π

dtf(t)e−i(−n)t = c−n (20)

Perhaps one surprising aspect of the formula

cn =
1

2π

∫ π

−π

dtf(t)e−int (21)

is the minus in the exponential; this can be understood in terms of the complex inner
product. A complex inner product

〈·|·〉 : V × V → C (22)

on a complex vector space V is a map from pairs of vectors to the complex numbers,
satisfying for u, v, w in V and λ and µ in C

1. Bilinearity

〈λu + µv|w〉 = λ〈u|w〉+ µ〈v|w〉
〈u|λv + µw〉 = λ∗〈u|v〉 + µ∗〈u|w〉 (23)

2. Symmetry
〈u|v〉 = 〈v|u〉∗ (24)

3. Positivity
〈u|u〉 ≥ 0 (25)

with equality if and only if u = 0.

In short, the definition of inner product in the complex case has a conjugate in it: this
can be thought of as being necessary for positivity condition to make sense 〈u|u〉 is real
since 〈u|u〉∗ = 〈u|u〉 and so it makes sense to talk about it being positive. Anyway, the
point is that because of this conjugation, the one appearing in the symmetry axiom in the
definition, for complex period functions with period 2π the inner product is

〈f |g〉 =

∫ π

−π

fg∗dt (26)

5

and so if you consider

f(t) =

∞
∑

n=−∞

cneint. (27)

and a decomposition over a set of functions exp (int), the process of ‘dotting’ across by
exp (imt) means multiplying by exp (−imt) and integrating.

• Example: It is easy to redo the last by integrating; since we have already done the
integrations when working out the bn’s, we will use the previous real series to work
out the Fourier coefficients for the complex series, so,

f(t) =
4

π

∑

n>0 and odd

1

n
sin nt

=
2

π

∑

n>0 and odd

1

n

(

eint − e−int
)

=
2

π

∑

n odd

1

n
eint (28)

so

cn =

{

2/(πin) n odd
0 otherwise

(29)

It is instructive to also calculate this by integrating

cn =
1

2π

∫ π

pi

f(t)e−intdt =
1

2π

(
∫ π

0

e−intdt +

∫ 0

−π

e−intdt

)

=
1

inπ

(

2 − einπ − e−inπ
)

(30)

and using

einπ = cos nπ + i sin nπ = (−1)n

e−inπ = cos nπ − i sin nπ = (−1)n (31)

this give the same answer as before

• Example: Consider f(t) = et for −π < t < π and f(t + 2π) = f(t). So,

cn =
1

2π

∫ π

−π

dte−intet =
1

2π

∫ π

−π

dte(1−in)t

=
eπe−inπ − e−πeinπ

2π(1 − in)
= (−1)n eπ − e−π

2π(1 − in)

=
sinh π

π

(−1)n

1 − in
(32)

and so

f(t) =
sinh π

π

∞
∑

n=−∞

(−1)n

1 − in
eint (33)
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At t = 0 this gives the ‘amusing’ formula

1 =
sinh π

π

(

1 +
∞
∑

n=1

(−1)n

1 − in
+

∞
∑

n=1

(−1)n

1 + in

)

=
sinh π

π

∞
∑

n=2

(−1)n

1 + n2
(34)

where the n = 1 terms cancel the one.

Parseval’s Theorem

Parseval’s theorem is a relation between the L2 size of f(t) and the Fourier coefficients:

1

L

∫ L/2

−L/2

|f(t)|2dt =
1

4
a2

0 +
1

2

∞
∑

n=1

(a2
n + b2

n) (35)

or for the complex series with L = 2π

1

2π

∫ π

−π

|f(t)|2dt =

∞
∑

n=−∞

|cn|
2 (36)

This theorem is very impressive, it relates a natural measure for the size of the function
on the space of periodic functions to the natural measure for the size of an infinite vector
on the space of coefficients. It is easy to prove and convenient too for the complex series

∫ π

−π

dtf(t)f ∗(t) =
∑

m,n

cnc∗m

∫ π

−π

dte2πi(n−m)t/l =
∑

m,n

cnc∗mδnm = l
∑

n

|cn|
2. (37)

• Example: So, going back to the block wave example, it is easy to check that

1

2π

∫ π

−π

dt|f(t)|2 = 1 (38)

so

1 =
8

π2

(

1 +
1

9
+

1

25
+

1

49
+ . . .

)

. (39)
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