## Complex Fourier series for the block wave ${ }^{1} 22$ October 2010

Consider the block wave with period $l=2 \pi$

$$
f(t)= \begin{cases}1 & 0<t<\pi  \tag{1}\\ -1 & -\pi<t<0\end{cases}
$$

with $f(t+2 \pi)=f(t)$.


Lets work out its complex Fourier series

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t \tag{2}
\end{equation*}
$$

and, to substitute in for $f(t)$ we split the integration interval into the two subintervals, $[-\pi, 0]$ where $f(t)=-1$ and $[0, \pi]$ where $f(t)=1$, hence

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi}\left[-\int_{-\pi}^{0} e^{-i n t} d t+\int_{0}^{\pi} e^{-i n t} d t\right] \tag{3}
\end{equation*}
$$

Now, doing the two integrals we get

$$
\begin{align*}
c_{n} & \left.\left.=\frac{1}{2 \pi}\left\{-\frac{1}{-i n} e^{-i n t}\right]_{-\pi}^{0}+\frac{1}{-i n} e^{-i n t}\right]_{0}^{\pi}\right\}  \tag{4}\\
& =\frac{i}{2 n \pi}\left[-1+e^{-i n \pi}+e^{i n \pi}-1\right] \tag{5}
\end{align*}
$$

Now $\exp (-i n \pi)=\cos n \pi-i \sin n \pi=(-1)^{n}$; in the same way $\exp (i n \pi)=(-1)^{n}$ so we get

$$
c_{n}= \begin{cases}\frac{-i}{n \pi} & n \text { odd }  \tag{6}\\ 0 & n \text { even }\end{cases}
$$

Now, Parseval's theorem tells us that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \tag{7}
\end{equation*}
$$

[^0]The left hand side is just one because $|f(t)|^{2}=1$ for all $t$, the right hand side is

$$
\begin{equation*}
\left|c_{n}\right|^{2}=c_{n}^{*} c_{n}=\frac{4}{n^{2} \pi^{2}} \tag{8}
\end{equation*}
$$

for $n$ odd. Hence

$$
\begin{equation*}
\frac{\pi^{2}}{4}=\sum_{n \text { odd }} \frac{1}{n^{2}}=2 \sum_{n>0, \text { odd }} \frac{1}{n^{2}} \tag{9}
\end{equation*}
$$

where we get the last term by noting that negative $n$ gives the same result as positive $n$. Hence

$$
\begin{equation*}
\frac{\pi^{2}}{8}=1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81}+\ldots \tag{10}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\pi^{2}}{8} \approx 1.23370055 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81} \approx 1.18386495 \tag{12}
\end{equation*}
$$

add a few more terms

$$
\begin{equation*}
\sum_{n<=21, \text { odd }} \frac{1}{n^{2}} \approx 1.21098888 \tag{13}
\end{equation*}
$$

so we can see the series converging towards the right answer, but not amazingly fast.


[^0]:    ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/MA22S3

