
MA1262 - original exam and solutions, final

exam may be slightly different.

1. (a) (4) How would this programme have to be changed

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

cout<<"Of man’s first disobedience"<<endl;

}

if the line using namespace std; was removed.

Solution: If the using namespace std; was removed you wouldn’t
be in the std; namespace so the namespace for the cout and endl

would have to be indicated explicitely,

std::cout<<"Of man’s first disobedience"<<std::endl;

(b) (3) What will this programme output

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

int a=0;

cout<<a<<endl;

cout<<a++<<endl;

cout<<++a<<endl;

}

Solution: The output will be 0 0 2 with carriage returns inbe-
tween since the first increment is a postincrement, it only happens

1

after the value is return, the second increment is a preincrement,
it happens before the value is returned.

(c) (3) What is the difference between endl, flush and \ n?

Solution: flush flushes the stream, so everything queued for
outputing is outputted, \ n prints out a carriage return, so sub-
sequent output appears on the next line, endl does both.

(d) (6) What will this programme output

#include<cstdlib>

#include<iostream>

#include<cmath>

using namespace std;

int main()

{

int a=3;

int b=5;

double c=b/a;

cout<<c<<endl;

c=double(b)/a;

cout<<c<<endl;

cout<<int(c)<<endl;

cout<<floor(c)<<endl;

cout<<ceil(c)<<endl;

c=-double(b)/a;

cout<<c<<endl;

cout<<int(c)<<endl;

cout<<floor(c)<<endl;

cout<<ceil(c)<<endl;

}

2

Solution: 1 1.6667 1 1 2 -1.66667 -1 -2 -1 with returns inbetween.
b/a cast as an int since it is the division of two ints, when it is
cast as a double it is already one. However, dividing a double by
an int gives a double. Casting to an int cuts off the decimal,
doing floor gives the integer less than it and ceil gives the one
above it.

2. (a) (6) What is wrong with this programme

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

double a=0;

if(a=0)

cout<<"I want this printed out"<<endl;

}

What will the output be and why? How would you correct this
programme?

Solution: The problem is the = instead of == in the if statement.
Some compilers won’t compile this, but if it does, the assignation
returns the value assigned, in this case 0 which casts to false so
nothing is printed. Obviously the way to change it is to change
the assignation = to the boolean ==.

(b) (6) What will the output of this program be

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

double a=0;

if(a==1&&cout<<"I am in your base ")

3

cout<<"shootin your d00dz"<<endl;

}

What will the output be? What would it be if the line double

a=0 was changed to double a=1? Why?

Solution: So a is not one, so the boolean in the if statement
fails on the a==1 and, because and is lazy, the second line is not
evaluated, however, if the a is changed to one, the first part is
true, so the second is evaluated, evaluating a cout causes it to
print out and evalate as true if it is successful, so the program
will print I am in your base shootin your d00dz.

(c) (4) If a and b are two bools give the value of the following for
the four possible combinations of a and b being true and false:
(a&&b), (a||b), (a&&!b), (a&&(b||!b)).

Solution:

For TT we have (a&&b) T, (a||b) T, (a&&!b) F and (a&&(b||!b))
T. For TF we have (a&&b) F, (a||b) T, (a&&!b) T and (a&&(b||!b))
T. For FT we have (a&&b) F, (a||b) T, (a&&!b) F and (a&&(b||!b))
F. For FF we have (a&&b) F, (a||b) F, (a&&!b) F and (a&&(b||!b))
F.

(d) (4) What is the output of this programme

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

double a=1;

if(a==0)

cout<<"red lorry"<<endl;

cout<<"yellow lorry"<<endl;

cout<<"green lorry"<<endl;

}

Solution: The trick here is that the second cout is not in the if
block since there are no curly brackets, so the output will be

4

yellow lorry

green lorry

3. (a) (6) This programme won’t compile, why not? Correct it so that
it compiles.

#include<cstdlib>

#include<iostream>

using namespace std;

int main()

{

double a=6.5;

print(a);

}

void print(int b)

{

cout<<b<<endl;

}

What will the output be and why?

Solution: So there is no prototype for the function, the line void
print(int b) needs to be added before the int main(). If that’s
done the output will be 6 since the call will cast the value to an
int.

(b) (7) What will the output of this programme be.

#include<cstdlib>

#include<iostream>

using namespace std;

int prints_stuff(int a,int & b);

int main()

{

5

int a=4;

int b=-2;

cout<<prints_stuff(a,b)<<" "<<a<<" "<<b<<endl;

}

int prints_stuff(int b,int &a)

{

cout<<b<<endl;

a++;

b++;

return a+b;

}

What will the output be and why?

Solution: So this is all about confusing you with things changing
names, what matters is the place things are in, so a is found and b

is -2, the cout prints the output of the function, inside

the function b is the name of the first argument of the

function whereas in main this is a; when the function is

called it prints out its b giving

4

one is added to both variable and their sum is returned,

so the cout prints out a four again, ie (4+1)+(-2+1), one

has been added to the second argument of the function in

the main since that variable is passed by reference, the

second argument is the b in main so

4 4 -1

(c) (5) Give a quick description of each line of output.

#include<cstdlib>

#include<iostream>

#include<vector>

using namespace std;

6

int main()

{

bool a_true_thing=true;

vector<bool> a;

cout<<a.size()<<endl;

a.push_back(a_true_thing);

a.push_back(!a_true_thing);

a.push_back(a_true_thing);

a.push_back(a_true_thing);

cout<<a.size()<<endl;

for(unsigned int i=0;i<a.size();i++)

{

cout<<a.at(i)<<endl;

a.at(i)=!a.at(i);

}

cout<<"\n";

for(unsigned int i=0;i<a.size();i++)

cout<<a[i]<<endl;

}

Solution: So the vector a is TFTT, the F coming from the

!. When it prints out the size it give four, then it prints

out each entry giving 1 0 1 1 with returns corresponding

to the TFTT, it nots each of them as it does so, so after

the extra line from the \ n it prints out 0 1 0 0 with returns.

(d) (2) What is the difference between a.at(i) and a[i] in the

above programme.

Solution: a.at(i) does a range check, a[i] does not, so with the

7

former calling the vector for an index not in its range will give an
error, with the latter it may give an error, but a more obscure one, or
it might just mess up the result of the program. The range check does
make the former slower.

4. (a) (5) What is meant by a class, a class method and an instance of

a class?

Solution: A class is a user defined datatype, a method is a func-
tion built into that datatype, an instance is a variable declared for
the class.

(b) (5) Describe the output of this code

#include<cstdlib>

#include<iostream>

using namespace std;

class Battery

{

public:

Battery(double charge){this->charge=charge;}

Battery(){charge=1;}

void deplete(){charge=0;}

void recharge(){charge=1;}

double get(){return charge;}

void print(){cout<<charge<<endl;}

private:

double charge;

}

int main()

{

Battery aa(0.5);

Battery b();

Battery c;

aa.print();

b.print();

8

c.print();

aa.recharge();

b.deplete();

aa.print();

b.print();

}

Solution: So b and c are both declared with the default con-
structor, so they both have charge of one, aa is declared with the
other constructor and has a charge of 0.5. Hence the first block
of .print()s prints out 0.5 1 1 with returns, next aa is charged
and b depleted, so the output is 1 0.

(c) (5) Find and correct four mistakes in this code:

#include<cstdlib>

#include<iostream>

using namespace std;

class Bungee

{

public:

Bungee(int a);

int set_a(int a);

int get_a();

private:

int a;

}

Bungee::Bungee(int a){this->a=a;}

set_a(int a){this->a=a;}

get_a(){return a;}

int main()

{

int b=2;

9

Bungee stretchy_cord;

stretchy_cord.set_a(b);

cout<<stretcjy_cord.get_a();

}

Solution: So

#include<cstdlib>

#include<iostream>

using namespace std;

class Bungee

{

public:

Bungee(int a);

int set_a(int a);

int get_a();

private:

int a;

}; //";" added

Bungee::Bungee(int a){this->a=a;}

void Bungee::set_a(int a){this->a=a;} // "void" and "Bungee::" added

int Bungee::get_a(){return a;} // "int" and "Bungee::" added

int main()

{

int b=2;

Bungee stretchy_cord; //there is no default constructor, so either

stretchy_cord.set_a(b);

cout<<stretcjy_cord.get_a(); //should be stretchy, this was actually

}

10

(d) (5) What is a template, what is the output of the following pro-
gramme and what are all the angle brackets for?

#include <cstdlib>

#include <iostream>

using namespace std;

template <class T>

T GetMax (T a, T b)

{

T result=b;

if (a>b)

result=a;

return result;

}

int main ()

{

int i=5, j=6, k;

k=GetMax<int>(i,j);

double x=6.5; y=2.6, z;

z=GetMax<double>(x,y);

cout << k << endl;

cout << z << endl;

}

Solution: A template stands in for a datatype, the angle brackets
give the data type argument.

11

