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Questions

These questions are all pretty straight-forward if you have the patience to read through
their lengthy statement.

1. The spike triggered average is

Ā(t) =

〈

∑

ti

s(ti − t)

〉

(1)

where s(t) is the stimulus, the ti are the spike times and the angle brackets denote
the average over trials. For convenience let us write the spike triggered average of a
single trial as

A(t) =
∑

ti

s(ti − t) (2)

so Ā = 〈A〉. If we represent the spike train as

ρ(t) =
∑

ti

δ(t − ti) (3)

then

Ā(t) =

〈
∫

dt′s(t′ − t)ρ(t)

〉

=

∫

dt′s(t′ − t)r(t) (4)

where the firing rate is
r(t) = 〈ρ(t)〉 (5)

If there is only a smooth number of trials, so that the rate is smoothed with a kernel

r(t) =

〈
∫

dτρ(t − τ)k(τ)

〉

(6)

what is Ā(t) in terms of k(τ) and A(t)? What about Qrs(τ) which is used in the
linear rate model? These comments are intended to show that kernel smoothing,
something that is always done, might be useful when presenting a rate function, but
is not necessarily useful in applications of the firing rate where some other integral
might provide some smoothing.

Solution: The point being made here is that the spike rate is a smoothing of the
spike train and this isn’t always needed, since the spike train is smoothed anyway:

Qrs(τ) =

∫

dtr(τ ′)s(τ − τ ′) (7)
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and so

Qrs(τ) =

〈
∫

dtρ(τ ′ − t)k(t)s(τ − τ ′)

〉

=

∫

dtk(t)

∫

dt 〈ρ(τ ′ − t)〉 s(τ − τ ′) (8)

so if

qrs(τ) =

∫

dt 〈ρ(τ ′)〉 s(τ − τ ′) (9)

then

Qrs(τ) =

∫

dtk(t)qrs(τ − t) (10)

and so the original smoothing kernel applied to spike trains acts as a smoothing
kernel on the stimulus-response correllation function, something that might not need
smoothing since the stimulus will smooth it anyway.

2. For the linear rate model the integral equation for the kernel was calculated using
functional differentiation, that equation was then solved by discretizing time and
solving the corresponding matrix equation. Show that you get the same answer if
you discretize earlier; that is, discretize the linear model

r̃ = r0 +

∫

dτh(τ)s(t − τ) (11)

so, for example Hi = h(iδt) and then differentiate the error with respect to Hi.

Solution: So this is just a question of following the instruction to discretize the
functional integral:

Hi = h(iδt)
Riδt = r(iδt)

R̃i = r̃(iδt)
Sij = s(iδt − jδt) (12)

Sij has a special structure, from its definition Si−k,j−k = Sij for many values of i, j
and k. A matrix like this is called a Toeplitz; suprisingly this property of Sij plays
no rôle in what follows. The factor of 1/δt is added for convenience

Discretizing the linear model gives

R̃i = R̄ +
∑

k

SikHk (13)

where R̄ = r0δt, the extra factors of δt are for convenience and mean that Ri is
the probability of a spike in the small interval labelled by i. The error we need to
minimize is

ǫ =
∑

i

(Ri − R̃i)
2 =

∑

i

(

RiRi − 2RiR̃i + R̃2
i

)

(14)
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To minimize with respect to Hi we take the derivative

∂ǫ

∂Hj

=
∑

i

(R̃i − Ri)
∂R̃i

∂Hj

(15)

and
∂R̃i

∂Hj

= Sij (16)

This means the minimum is at

∑

i

(

r0 +
∑

k

SikHk − Ri

)

Sij = 0 (17)

and so
∑

k

Qss
jkHk = Qrs

j (18)

where the stimulus-stimulus correllation is

Qss
jk =

∑

i

SijSik (19)

and the stimulus-response correllation is

Qrs
j =

∑

i

(Ri − R̄)Sij (20)

3. The convolution theorem for the Fourier transform states that

F(f ∗ g) = 2πF(f)F(g) (21)

where as usual

F(f) =
1

2π

∫

dtf(t)e−ikt (22)

and the convolution is given by

f ∗ g(t) =

∫

dτf(t)g(t − τ) (23)

Hence

F(f ∗ g) =
1

2π

∫

dt

∫

dτf(t)g(t− τ)e−ikt

=

∫

dt

∫

dτf(τ)g(t− τ)e−ik(t−τ)e−ikτ

=

∫

dt

∫

dt′f(t)g(t′)e−ikt′e−ikt
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= 2π
1

2π

∫

dtf(t)e−ikt 1

2π

∫

dtg(t)e−ikt (24)

as required. You should note that in proving the convolution theorem we have as-
sumed all the integrals run over t ∈ (−∞,∞). Ignoring the finite integration limits
use the convolution theorem to solve the equation for the kernel

∫

dτ ′Qss(τ − τ ′)h(τ ′) = Qrs(−τ). (25)

Solution: Well this follows fairly directly if we write the equation for the kernel as a
convolution

Qss ∗ h(τ) == Qrs(−τ). (26)

Now, take the Fourier transform of both sides

2πF(Qss)(k)F(h)(k) = F(Qrs)(−k) (27)

Hence

h(τ) =
1

2π
F−1

(

F(Qss)(k)

F(Qrs)(−k)

)

(28)
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