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Problem Sheet 4

1. Check that the Jacobian for the transformation from cartesian to spherical polar
coordinates is

J = r2 sin θ.

Consider the hemisphere defined by
√

x2 + y2 + z2 ≤ 1, z ≥ 0.

Using spherical polar coordinates compute its volume and centroid.

Solution:Spherical polar coordinates are defined by

x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ. (1)

The Jacobian is

∂(x, y, z)
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∣

∣

∣

∣
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sin θ sin φ r cos θ sin φ r sin θ cos φ
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∣

∣

∣

∣

∣

∣
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= r2 sin2 θ
[

cos2 θ cos2 φ + cos2 θ2 sin2 φ2 + sin2 θ cos2 φ + sin2 θ sin2 φ
]

= r2 sin θ. (2)

Volume =
∫

D
dV . Centroid x̄ = ȳ = 0 by symmetry and z̄ =

∫

D
dV z/

∫

D
dV. Now

∫

D

dV =

∫

2π

0

dφ

∫ π/2

0

dθ

∫

1

0

dr r2 sin θ = 2π

∫ π/2

0

dθ sin θ
1

3
.

= −
2

3
π cos θ

∣

∣

∣

∣

π/2

0

= 2π/3 (3)

as expected.

The other integral is
∫

D

dV z =

∫

2π

0

dφ

∫ 1

2
π

0

dθ

∫

1

0

dr r2 sin θ · r cos θ = 2π

∫ 1

2
π

0

dθ sin θ cos θ
1

4

=
π

2

∫ 1

2
π

0

dθ
1

2
sin 2θ =

π

4
(4)

and therefore z̄ = 3/8.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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2. Show div r = 3 and grad |r| = r/|r|.

Solution:Well
r = xi + yj + zk (5)

and so

∇ · r =
∂

∂x
x +

∂

∂y
y +

∂

∂z
z = 3 (6)

and

∇ r =
∂r

∂x
i +

∂r

∂y
j +

∂r

∂z
k (7)

and
∂

∂x
r =

∂

∂x

√

x2 + y2 + z2 =
x

r
(8)

by the chain rule.

3. Find ∇(1/|r|).

Solution:So this is similar to the previous one

∇
1

r
=

∂

∂x

1

r
i +

∂

∂y

1

r
j +

∂

∂z

1

r
k (9)

and
∂

∂x

1

r
= −

1

r2

∂

∂x
r = −

x

r3
(10)

hence

∇
1

r
= −

r

r3
(11)

and this, or course, is consistient with curl r/r3 = 0.

4. Show grad f(r) = f ′(r)r̂ where r = |r|. If F(r) = f(r)r find divF(r). Find
div grad f(r).

Solution:So, now, we use the chain rule to show

∂

∂x
f(r) = f ′(r)

∂r

∂x
=

xf ′(r)

r
(12)

and, since the gradient has three terms of this form, it is easy to see grad f(r) =
f ′(r)r̂. As for the divergence, F1 = xf(r) and

∂

∂x
xf(r) = f(r) +

x2f ′

r
(13)

and so, adding three similar terms together, we get

∇ · F = 3f + rf ′ (14)
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Finally, , we know the grad f(r) and, so, using f ′/r for f in the divergence formula
we get

△f(r) =
3f ′

r
+ r

(

f ′

r

)

′

=
2f ′

r
+ f ′′ (15)

which gives us a formula for the laplacian of a spherically symmetric field in polar
coördinates, later we will see how to convert partial differential equations from one
coördinate system to another.

5. Show that away from the origin the vector field

F =
r̂

r2
=

r

r3
(16)

is irrotational (here r = xi + yj + zk and r = |r| =
√

x2 + y2 + z2).

Solution:Note that F = grad (−1/r) and so curl F = 0. This can also be done by
direct calculation.
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Problem Sheet 5

1. Calculate curl r/r and div r/r away from the origin. What is △r?

Solution:So it is easy enough to check these by hand, for example, the bfi component
of curl r/r is given by

(

∇×
r

r

)

1

=
∂

∂y

z

r
−

∂

∂z

y

r
= 0 (17)

and, with the other two components similar curl r/r = 0. As for the divergence

∂

∂x

x

r
=

1

r
−

x2

r3
(18)

and hence div r/r = 2/r. Finally, grad r = bfr/r so △r = 2/r.

2. Prove the identity
∇ · (∇× F) = 0 (19)

Solution:So this is easy by direct calculation,

∇ · (∇× F) = ∂x(∂yF3 − ∂zF2) + ∂y(∂zF1 − ∂xF3) + ∂z(∂xF2 − ∂yF1) (20)

and expanding out, all the terms cancel, assuming the partial derivative commute.

3. Prove the identity
∇× (∇× F) = ∇(∇ · F) −△F. (21)

Solution:Lets do the first component:

[∇× (∇× F)]1 =
∂

∂y
(F2,x − F1,y) −

∂

∂z
(F3,x − F1,z) (22)

where F = F1i + F2j + F3k and I am using a comma notation for differenciation so
for example

F2,x =
∂F2

∂x
(23)

Now, taking away some brackets

[∇× (∇× F)]1 = F2,xy − F1,yy − F3,xz − F1,zz (24)

Coming from the other side

[∇(∇ · F)]1 =
∂

∂x
(F1,x + F2,y + F3,z) = F1,xx + F2,yx + F3,zx (25)

so
[∇× (∇× F)]1 − [∇(∇ · F)]1 = F1,xx + F1,yy + F1,zz = [△F]1 (26)

and similarily for the other components.
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4. Compute the line integrals:

(a)
∫

C
(dx xy + 1

2
dy x2 + dz) where C is the line segment joining the origin and

the point (1, 1, 2).

(b)
∫

C
(dx yz + dy xz + dz yx2) where C is the same line as in the previous part.

Solution:A quick way here is to note that F is conservative.

F = xyi +
1

2
x2j + k = ∇φ (27)

where φ = 1

2
x2y + z. Hence

∫

C

F · dl = φ(1, 1, 2) − φ(0, 0, 0) =
5

2
. (28)

For the next part, use the parametrization x(u) = u, y(u) = u, z(u) = 2u (0 ≤ u ≤ 1).

dr

du
= i + j + 2k,

F ·
dr

du
= 2u2 + 2u2 + 2u3 = 4u2 + 2u3 (29)

so
∫

C

F · dl =

∫

1

0

du
(

4u2 + 2u3
)

=
4

3
+

1

2
=

11

6
. (30)

5. For each of the following vector fields compute the line integral
∮

C
F · dl where C is

the unit circle in the xy-plane taken anti-clockwise.

(a) F = xi + yj

(b) F = yi − x2yj.

Solution:In the first part F = ∇1

2
(x2 + y2) so that F is conservative giving

∮

C
F · dl.

In the second part parametrize curve:

x(u) = cos u
y(u) = sin u
z(u) = 0 (31)

where 0 ≤ u ≤ 2π or r(u) = cos ui + sin uj. Now

dr(u)

du
= − sin ui + cos uj. (32)

and

F ·
dr

du
= −y sin u − x2y cos u = − sin2 u − cos3 u sin u. (33)

Thus
∮

C

F · dl =

∫

2π

0

du
(

− sin2 u − cos3 u sin u
)

= −π, (34)

since the average value of sin2 u is 1

2
and

∫

2π

0
du cos3 u sinu = 0 by symmetry.
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Problem Sheet 6

1. For each of the following vector fields compute the line integral
∫

C
F · dl where C is

the semi-circle of radius two around the origin in the xy-plane with y positive, taken
anti-clockwise.

(a) F = x2i + xyj

(b) F = −yi + xj.

Solution:So, once again we parameterize the curve:

r = 2 cos ti + 2 sin tj (35)

so
dr

dt
= −2 sin ti + 2 cos tj (36)

and, so, for the first part, on the curve, x = 2 cos t and y = 2 sin t so

F ·
dr

dt
= −8 cos2 t sin t + 8 cos2 t sin t = 0 (37)

and hence the integral is zero. For the second part

F ·
dr

dt
= 4 cos2 t + 4 sin2 t = 4 (38)

so
∫

C

F · dl =

∫ π

0

F ·
dr

dt
dt = 4

∫ π

0

dt = 4π (39)

2. Evaluate the line integrals
∫

C
F · dl for

(a) F = (x2y, 4, 0) with C given by r(t) = (exp (t), exp (−t), 0) with t going from
zero to one;

(b) F = (z, x, y) with C given by r(t) = (sin t, 3 sin t, sin2 t) with tgoing from zero
to π/2.

(c) F = λ(x, y) with λ = (x2 + y2)−3/2 and with C given by r(t) = (et sin t, et cos t)
with t going from zero to one.

Solution:For the first one
r = (exp (t), exp (−t), 0) (40)

so
dr

dt
= (exp (t),− exp (−t), 0) (41)

and, on the curve,

F ·
dr

dt
= e2t − 4e−t (42)
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and hence
∫

C

F · dl =

∫

1

0

F ·
dr

dt
dt =

∫

1

0

(e2t − 4e−t)dt =
1

2
e2 + 4e−1 −

9

2
(43)

For the next one
r = (sin t, 3 sin t, sin2 t) (44)

so
dr

dt
= (cos t, 3 cos t, 2 sin t cos t) (45)

and, on the curve,

F ·
dr

dt
= (7 sin2 t + 3 sin t) cos t (46)

and hence

∫

C

F · dl =

∫ π/2

0

F ·
dr

dt
dt

=

∫ π/2

0

(7 sin2 t + 3 sin t) cos tdt =

∫

1

0

(7u2 + 3u)du =
23

6
(47)

where we have used a substitution u = sin t.

Finally
r =

(

et sin t, et cos t
)

(48)

which is an exponential spiral with

dr

dt
=

(

et(sin t + cos t), et(cos t − sin t)
)

(49)

and, thanksfully, this is simplifies on the curve to

F ·
dr

dt
= e−t (50)

and hence
∫

C

F · dl =

∫

1

0

F ·
dr

dt
dt =

∫

1

0

e−tdt = e−1 − 1 (51)

3. For each of these fields determine if F is conservative, if it is, by integration or
otherwise, find a potential: φ such that F = ∇φ.

(a) F = xi + yj

(b) F = 3y2i + 6xyj

(c) F = ex cos yi− ex sin yj

(d) F = (cos y + y cos x)i + (sin x − x sin y)j

7

Solution:So, in the first case, it is easy to see the curl is zero, having done that we
want F = ∇φ, hence F1 = φ,x or

∂

∂x
φ = x (52)

and hence φ = x2/2 + C(y, z), where C(y, z) is an arbitrary function of y and z,
substitute that back in to get

∂

∂y
C = y (53)

giving φ = x2/2 + y2/2 + C(z) where C(z) = C a constant follows from F3 = 0.

For the next one the curl is again zero so there is a potential,

∂xφ = 3y2 (54)

so φ = 3y2x + C(y, z). Substituting into the y equation gives

∂yφ = 6xy + ∂yC(y, z) = 6xy (55)

and hence ∂yC(y, z) = 0 so C(y, z) = C(z), further substituting this into ∂zφ = 0
shows C(z) = C a constant and φ = 3y2x + C.

For the next one the curl is again zero so there is a potential,

∂xφ = ex cos y (56)

so φ = ex cos y + C(y, z). Substituting into the y equation and z equation show that
C(y, z) = C a constant and φ = ex cos y + C.

Finally the last one also has zero curl and

∂xφ = cos y + y cos x (57)

giving φ = x cos y + y sin x + C(y, z) and, again, substituting in to the y equation
and z equation show that C(y, z) = C a constant and φ = x cos y + y sin x + C. It
won’t always work out like this with arbitrary function turning out to be an arbitrary
constant, it is just an accident that I ask you three examples like this!

4. Consider the ‘point vortex’ vector field

F =
y

x2 + y2
i −

x

x2 + y2
j.

Show that curl F = 0 away from the z-axis. Establish that F is not conservative in
the (non simply-connected) domain x2 + y2 ≥ 1

2
. Is F conservative in the domain

defined by x2 + y2 ≥ 1

2
, y ≥ 0? If so obtain a scalar potential for F.

Solution:

∇× F =
1

2
k

[

∂x

(

−x

x2 + y2

)

+ ∂y

(

y

x2 + y2

)]
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=
1

2
k

[

−
1

x2 + y2
+

2x2

(x2 + y2)2
−

1

x2 + y2
+

2y2

(x2 + y2)2

]

= 0. (58)

To show that F is not conservative consider
∮

C
F · dl where C is the unit circle.

Using the obvious parametrization

∮

C

F · dl =

∫

2π

0

du
(

− sin2 u − cos2 u
)

= −2π 6= 0, (59)

therefore F is not conservative.

The domain x2 + y2 ≥ 1

2
, y ≥ 0 is simply connected and F is irrotational and smooth

is the domain. Thus F is conservative.

Write F = ∇φ. Seek a φ(x, y) such that

∂φ

∂x
=

y

x2 + y2
,

∂φ

∂y
= −

x

x2 + y2
. (60)

Integrate first equation by treating y as a constant

φ(x, y) = y

∫

dx

x2 + y2
= tan−1

x

y
+ C(y). (61)

Assume that x and y are non-negative, then

tan−1
x

y
+ tan−1

y

x
=

π

2
,

so that φ(x, y) = − tan−1 y
x
+ a possibly y-dependent constant. However it is easy to

check that φ = − tan−1 y
x

satisfies ∂φ
∂y

= − x
x2+y2 . Clearly, tan−1 y

x
is the usual polar

angle θ, that is φ = −θ.

Can try to extend this back to the original domain x2 + y2 ≥ 1

2
, but φ will suffer a

branch cut discontinuity at, say θ = 3

2
π.
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