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Useful facts:

Questions

1. The function φ(x, y) is harmonic in the square 0 ≤ x ≤ π, 0 ≤ y ≤ π. On three sides
φ is zero and on the lower side

φ(x, 0) = cosx. (1)

Determine φ(x, y) within the square.

Solution:Let φ(x, y) = X(x)Y (y) and substitute in to get

X ′′Y + Y ′′X = 0 (2)

and moving stuff around, this gives

X ′′

X
= −

Y ′′

Y
(3)

and so each side depends on a different independent variable, so they must be equal
to a constant

X ′′ = EX

Y ′′ = EY (4)

so there are three classes of solutions E = 0

X = Ax + B (5)

or E = k2

X = Aekx + Be−kx (6)

or E = −k2

X = A sin kx + B cos kx (7)

with similar solutions for Y but, because of the extra minus, with the positive and
negative E solutions the other way around. Now, we try to match the boundary
conditions. At x = 0 and x = π we have zero φ, hence, for Y non-trivial we must
have X(0) = X(π) = 0, as in the notes, it is not possible to match these boundary
conditions for the E positive and E = 0 solutions, this leaves the E = −k2, X(0) = 0
gives B = 0 and X(π) = 0 give

sin kπ = 0 (8)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
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and hence k = n a positive natural number, negative numbers give the same solutions
and n = 0 is just the E = 0 solution which was dealt with seperately.

Now, our general solution, satisfying the x boundary conditions and the differential
equation, is

φ(x, y) =

∞
∑

n=1

sin nx
(

Cneny + Dne−ny
)

(9)

and putting φ(x, π) = 0 gives

Cnenπ = −Dne−nπ (10)

Now, to satisfy the y = 0 condition

cos x =
∞

∑

n=1

An sin nx (11)

where An = Cn + Dn and 0 < x < π. We want to calculate this as a Fourier series,
so we have to extend the boundary function as an odd period function: we need a
f(x) such that f(x) = cos x for x ∈ (0, π), f(−x) = −f(x) and f(x + 2π) = f(x).
Hence, we define

f(x) =

{

cos x x ∈ (0, π)
− cos x x ∈ (−π, 0)

(12)

and f(x + 2π) = f(x) and we expect to be able to find An such that

f(x) =
∞

∑

n=1

An sin nx (13)

because it is a sine series for an odd function, and if we do that, we will satisfy
the boundary condition because f(x) reduces to the boundary condition along the
boundary. By the formula from Fourier analysis

An =
1

π

∫ π

−π

f(x) sin nxdx =
2

π

∫ π

0

cos x sin nxdx (14)

Now

2

π

∫ π

0

cos x sin nxdx =
1

π

∫ π

0

(sin (n + 1)x − sin (n − 1)x) dx

=
1

π

[

1

n − 1
cos (n − 1)x −

1

n + 1
cos (n + 1)x

]π

0

=
2

π

(

1 + (−1)n

n + 1
−

1 + (−1)n

n − 1

)

(15)

so

An = −
4

n2 − 1
(16)
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for n even and zero for n odd. Now, solving for Cn and Dn we get

φ(x, y) =
∑ 4

n2 − 1
sin nx

(

1

1 − e2πn
eny +

1

1 − e−2πn
e−ny

)

(17)

where the sum is over even values of n.

2. Repeat the problem with the boundary condition φ(x, 0) = sin x (again φ is zero on
the other three sides).

Solution:So everything is as before until we get the solution satisfying the x boundary
conditions and the differential equation:

φ(x, y) =

∞
∑

n=1

sin nx
(

Cneny + Dne−ny
)

(18)

and, again, as before, putting φ(x, π) = 0 gives

Cnenπ = −Dne−nπ (19)

Now, to satisfy the y = 0 condition we need

sin x =
∞

∑

n=1

An sin nx (20)

Finding the odd periodic extension of sin x is easy, it is already odd and periodic,
in fact, it is easy to see that the boundary condition is satisfied by A1 = 1 and all
others zero, hence

φ(x, y) = sin x

(

1

1 − e2π
ey +

1

1 − e−2π
e−y

)

(21)

3. Repeat the problem with the Neumann boundary condition

∂φ

∂x
= 0 (22)

at x = 0 and x = π,
∂φ

∂y
= 0 (23)

at y = π and
∂φ

∂y
= −1 (24)

on y = 0
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Solution:So, again, we do the seperation of variable and have three types of solution
for each condition; lets consider the boundary conditions at x = 0 and π,

X ′(0) = X ′(π) = 0 (25)

Now, if E = 0 and X = Ax + B then X ′ = A and the conditions tell us that A = 0,
they say nothing about B, as for the exponential solutions

X = Aekx + Be−kx

X ′ = = Akekx
− Bke−kx (26)

so X ′(0) = 0 says that A = B and so X ′(π) = 0 says that there are no non-trivial
solutions. That leaves the oscillating solutions

X = A sin kx + B cos kx

X ′ = = A cos kx − B sin kx (27)

now X(0) = 0 says A = 0 and X(π) = 0 says that k = n a natural number, hence

φ(x, y) =

∞
∑

n=1

cos nx
(

Cne
ny + Dne−ny

)

+ C + Dy (28)

is the general solution. Hence

∂φ(x, y)

∂y
=

∞
∑

n=1

cos nx
(

Cnneny
− Dnne−ny

)

+ D (29)

and setting this to zero at y = π gives D = 0 and

Cnenπ = Dne−nπ (30)

Finally, we have the bottom boundary condition

−1 =

∞
∑

n=1

An cos nx (31)

where An = Cn + Dn. Obviously this has no solution, integrating both sides from
zero to π would give π on the left but zero on the right. We are forced to realise
that the Neumann2 does not always have a non-singular solution. In fact the 2-d
Neumann problem for the Laplace equation on a region D only has a solution when

∫

δD

∇φ · dS = 0 (32)

which it doesn’t here.

2Named for Carl Neumann a German mathematician of the late 19th, early 20th centuries, not John

van Neumann as I may have implied
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4. φ(x, y) is harmonic in the strip 0 ≤ y ≤ 1 and periodic in the x direction. On the
upper and lower edges Dirichlet boundary conditions are imposed

φ(x, y = 1) = 1 + sin x, φ(x, y = 0) = cos 2x.

Determine φ(x, y) within the strip.

Suggestion: When applying the separation of variables method do not forget the
case

X ′′(x)

X(x)
=

Y ′′(y)

Y (y)
= 0. (33)

Solution:So again we use the seperation of variables and try to impose boundary
conditions. Since φ is periodic in the x direction we must have E = 0 or E = −k2

now, if E = 0,
φ = (Ax + B)(Cy + D) (34)

so X periodic implies A = 0 and X(0) = cos 2x means that D = 0, absorbing a
constant this leaves X = Cy so putting y = 0 we get φ = y is a solution φ(x, y =
1) = 1, φ(x, y = 0) = 0, next lets match the bottom boundary condition, φ(x, y =
0) = cos 2x, this means n = 2 and so

φ = cos 2x
(

Ce2y + De−2y
)

(35)

with C +D = 1 to give the bottom boundary and Ce2 +De−2 = 0 to give the bottom
boundary; this

φ = cos 2x

(

1

1 − e4
e2y +

1

1 − e−4
e−2y

)

(36)

satisfies φ(x, 0) = cos2x and φ(x, 1) = 0; finally

φ = sin x (Cey + De−y) (37)

satisfies the top condition provided

C + D = 0
Ce + De−1 = 1 (38)

which gives

φ = sin x

(

−
e

1 − e2
ey +

e

1 − e2
e−y

)

(39)

which satisfies φ(x, 0) = 0 and φ(x, 1) = sin x. Now, we put them all together to get

φ = y + cos 2x

(

1

1 − e4
e2y +

1

1 − e−4
e−2y

)

+ sin x

(

−
e

1 − e2
ey +

e

1 − e2
e−y

)

(40)

which solves the problem.
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