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Problem Sheet 16

1. Solve x2y′′ + 4xy′ + y = 0. Solution:x2y′′ + 4xy′ + y = 0. The standard substitution
x = ez gives

d2y

d2z
+ (4 − 1)

dy

dz
+ y = 0. (1)

Auxiliary equation λ2 + 3λ + 1 = 0 with roots λ = −3
2
± 1

2

√
5

y = C1e
−( 3

2
− 1

2

√
5)z + C2e

−( 3

2
+ 1

2

√
5)z = C1x

−( 3

2
+ 1

2

√
5) + C2x

−( 3

2
− 1

2

√
5). (2)

2. Solve x2y′′ + 4xy′ + y = x5. Solution:So the same substitution gives

d2y

d2z
+ 3

dy

dz
+ y = e5z (3)

So, we already have the complementary function for this, we just need the particular
integral, substitute y = C exp (5z) giving

25C + 15C + C = 1 (4)

giving

y = C1x
−( 3

2
+ 1

2

√
5) + C2x

−( 3

2
− 1

2

√
5) +

1

41
x5. (5)

This isn’t such a good question, the one I meant to ask was something like

x2y′′ − 3xy′ − 5y = x5 (6)

After substitution this gives

d2y

d2z
− 4

dy

dz
− 5y = e5z (7)

So, the complementary equation is

λ2 − 4λ − 5 = 0 (8)

leading to λ = 5 or λ = −1. Now, to get the particular integral, we need to substitute
y = Cz exp (5z). Hence

10C − 4C = 1 (9)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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so C = 1/6 and

y = C1x
5 +

C2

x
+

1

6
x5 log x (10)

Another question along the same lines would be

x2y′′ + 3xy′ + y = 0 (11)

Here substituting x = ez yields

d2y

d2z
+ (3 − 1)

dy

dz
+ y = 0.

Auxiliary equation λ2 + 2λ + 1 = 0 with two equal roots λ = −1 so that y(x) =
C1e

−z + C2ze
−z = C1x

−1 + C2x
−1 log x.

3. Assuming the solution of
(1 − x)y′ + y = 0 (12)

has a series expansion about x = 0 work out the recursion relation. Write out the
first few terms and show that the series a2 = 0 so the series actually terminates to
give y = A(1 − x) for arbitrary A. What is the solution with y(0) = 2.

Solution:Well we begin by writing

y =
∞

∑

n=0

anxn (13)

and so by differentiation we get

y′ =
∞

∑

n=0

annxn−1 (14)

and hence

xy′ =
∞

∑

n=0

annxn. (15)

Thus, substituting the differential equation we get

∞
∑

n=0

annxn−1 −
∞

∑

n=0

annxn +

∞
∑

n=0

anxn = 0 (16)

In order to make progress we need to rewrite the first of these three series so that it
is in the form

∞
∑

n=0

stuffnx
n (17)
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so that all three bits in the equation match. Well, let m = n − 1 in the expression
for y′, (??), to get

y′ =
∞

∑

m=0

am+1(m + 1)xm. (18)

In fact, this looks at first like it gives

y′ =

∞
∑

m=−1

am+1(m + 1)xm (19)

but the m = −1 term is zero, so that’s fine. Now m is just an index so we can
rename it n, don’t get confused, this isn’t the original n, we just want all parts of
the equation to look the same.

In fact, we now have

∞
∑

n=0

an+1(n + 1)xn −
∞

∑

n=0

annxn +

∞
∑

n=0

anxn = 0 (20)

and we can group this all together to give

∞
∑

n=0

[an+1(n + 1) + (1 − n)an]xn = 0. (21)

The recursion relation is

an+1 = −
(

1 − n

1 + n

)

an (22)

and this applies to n from zero upwards since that is what appears in the sum sign.

Starting at n = 0 we have
a1 = −a0. (23)

For n = 1 we get
a2 = 0 (24)

and the series terminates here because every term is something multiplied by the
one before and so if a2 is zero the rest of the series is zero. Thus y = a0(1 − x) for
arbitrary a0. If y(0) = 2 then a0 = 2 and y = 2(1 − x).

Problem Sheet 17

1. Use the recursion relation

an+2 =
2(n − α)an

(n + 1)(n + 2)

3

or the generating function

Φ(x, h) = e2xh−h2

=

∞
∑

n=0

hn

n!
Hn(x)

to obtain polynomial solutions of Hermite’s equation y′′ − 2xy′ + 2αy = 0 for α = 3,
4 and 5.

Solution:Ok lets use the generating function, so, we want everything up to h5

Φ(x, h) = e2xh−h2

= 1 + (2xh − h2) +
1

2
(2xh − h2)2 +

1

6
(2xh − h2)3

+
1

24
(2xh − h2)4 +

1

120
25x5h5 + O(h6) (25)

and, continuing to drop high powers in h

Φ(x, h) = 1 + 2xh − h2 +
1

2
(4x2h2 − 4xh3 + h4) +

1

6
(8x3h3 − 12x2h4 + 6xh5)

+
1

24
(16x4h4 − 32x3h5) +

1

120
32x5h5 + O(h6) (26)

Hence

P3(x) = 8x3 − 12x
P4(x) = 16x4 − 48x2 + 12
P5(x) = 32x5 − 160x3 + 120x (27)

2. Legendre’s equation can be written

(1 − x2)y′′ − 2xy′ + αy = 0,

where α is a constant. Consider a series solution of the form

y(x) =
∞

∑

n=0

anxn.

Determine a recursion relation for the an coefficients. For what values of α does
Legendre’s equation have polynomial solutions?

Solution:y(x) =
∑∞

n=0 anxn, y′(x) =
∑∞

n=0 nanxn−1, y′′(x) =
∑∞

n=0 n(n − 1)anx
n−2

Therefore xy′(x) =
∑∞

n=0 nanxn and x2y′′(x) =
∑∞

n=0 n(n − 1)anxn.

Relabel y′′(x) (n = m + 2)

y′′(x) =
∞

∑

m=−2

am+2(m + 2)(m + 1)xm =
∞

∑

m=0

am+2(m + 2)(m + 1)xm.
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The last step used that the first two terms in the sum are zero. The ODE can be
written

(1 − x2)y′′(x) − 2xy′(x) + αy(x)

=
∞

∑

m=0

xm [am+2(m + 2)(m + 1) − amm(m − 1) − 2mam + αam]

= 0, (28)

giving the recursion relation

am+2 =
m(m + 1) − α

(m + 2)(m + 1)
am.

If α is of the form n(n + 1) (n = 0, 1, 2, ...) one of the solutions of the ODE will be a
polynomial since the recursion relation will terminate.

3. (Frobenius training exercise) For each of the following equations obtain the indicial
equation for a Frobenius series of the form

y(x) =

∞
∑

n=0

anxn+s

(a) y′′ + y = 0.

(b) x2y′′ + 3xy′ + y = 0

(c) 4xy′′ + 2y′ + y = 0.

In case a) use the method of Frobenius to obtain the general solution. In case b)
use the method of Frobenius to find one solution (the method fails to give the other
solution).

Solution:(a) Frobenius: y =
∑∞

n=0 anxn+s where s is to be determined. Differentiating
twice gives y′′(x) =

∑

(n+ s)(n+ s−1)xn+s−2 (most singular term in ODE). Relabel
this as y′′(x) = a0s(s−1)xs−2+a1(s+1)sxs−1+

∑∞
m=0 am+2(m+s+2)(m+s+1)xm+s

and so

y′′(x) + y(x) = a0s(s − 1)xs−2 + a1(s + 1)sxs−1

+
∞

∑

m=0

xm+s [am+2(m + s + 2)(m + s + 1) + am] = 0.

Take a0 = 1. The indicial equation is

s(s − 1) = 0,

with roots s = 0 and s = 1.

5

s = 0 For this s can take a1 6= 0 but for now set a1 = 0.

Recursion relation: an+2(n + 2)(n + 1) + an = 0 or

an+2 = − an

(n + 2)(n + 1)
,

which is particularly easy to solve a0 = 1, a2 = − 1
1·2 , a4 = 1

1·2·3·4 , ..., a2p = (−1)p

(2p)!
. The

solution is

y(x) =
∞

∑

p=0

(−1)px2p

(2p)!
= cos x.

Including a1 6= 0 gives y(x) = cos x+a1 sin x. The s = 1 solution is also y(x) = sin x.
The general solution is

y(x) = A cos x + B sin x.

(b) x2y′′ + 3xy′ + y = 0. Frobenius y =
∑

n=0 anxn+s, xy′ =
∑

n=0 an(n + s)xn+s,
x2y′′ =

∑

n=0 an(n + s)(n + s − 1)xn+s. No ‘most singular’ term or terms! No
recursion relation! Indicial equation: need a0 contributions, x2y′′ + 3xy′ + y =
a0x

s [s(s − 1) + 3s + 1] + higher powers = 0 so that s2 + 2s + 1 = 0 with two equal
roots s = −1. Since there is no recursion relation the an (n > 0) are all zero.
y(x) = x−1 is one solution, the other solution is not a Frobenius series.

(c) Write y =
∑∞

n=0 an xn+s

y′ =
∑∞

n=0 an (n + s) xn+s, y′′ =
∑∞

n=0 an (n + s)(n + s − 1) xn+s. Now:

y′(x) = a0sx
s−1 +

∑∞
n=0 an+1(n + 1 + s)xn+s

xy′′(x) = a0s(s − 1)xs−1 +
∑∞

m=0 am+1(m + 1 + s)(m + s)xm+s.

4xy′′ + 2y′ + y = a0 [4s(s − 1) + 2s]

+
∞

∑

m=0

[4(m + 1 + s)(m + s)am+1 + 2(m + 1 + s)am+1 + am] xm+s

4a0s(s −
1

2
)xs−1 +

∞
∑

m=0

[

4(m + 1 + s)(m + s +
1

2
)am+1 + am

]

.

Set a0 = 1 Indicial equation: s(s − 1
2
) = 0 with roots s = 0 and s = 1

2
.

4. Use the recursion relation to show that the functions Hn defined through the gener-
ating function

Φ(x, h) = e2xh−h2

=
∞

∑

n=0

hn

n!
Hn(x)

satisfy Hermites equation
y′′ − 2xy′ − 2ny = 0.
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Solution:So
∂

∂x
Φ(x, h) = 2he2xh−h2

=
∞

∑

n=0

hn

n!
H ′

n(x) (29)

and
∂2

∂x2
Φ(x, h) = 4h2e2xh−h2

=
∞

∑

n=0

hn

n!
H ′′

n(x) (30)

So
∂2

∂x2
Φ(x, h) − 2x

∂2

∂x2
Φ(x, h) = 4(h − x2)he2xh−h2

(31)

The trick now is to spot3 that the right hand side is

−4(h − x2)he2xh−h2

= 2h
∂

∂h
e2xh−h2

=

∞
∑

n=0

n
hn

n!
Hn(x) (32)

Hence
∂2

∂x2
Φ − 2x

∂2

∂x2
Φ + 2h

∂

∂h
Φ = 0 (33)

and writing this out in terms of the sums gives

∞
∑

n=0

hn

n!
[H ′′

n(x) − 2xH ′
n(x) + 2nH(x)] (34)

and equating each coefficient of each power of h to zero gives the result.

Doing the same question using the recursion relation is more complicated, you need
to consider the expansion:

e2xh−h2

=
∞

∑

n=0

hn(2x − h)n

n!
=

∞
∑

n=0

hn

n!

n
∑

m=0

(

n
m

)

(2x)n−m(−1)mhm (35)

where the last expression comes from the binomial expansion. Now, we just need to
do a change of index to get this into the form

e2xh−h2

=
∞

∑

n=0

hn

n!
Hn(x) (36)

Lets start by setting p = m + n, the current index of h, the complication here is
that n appears in the sum range of m, so the end point of the m sum is m = p−m;
it is good to check by hand how the sums ranges change, but basically this means
m = p/2 for p even and m = (p − 1)/2 for m odd.

e2xh−h2

=

∞
∑

p=0

M(p)
∑

m=0

1

(p − m)!

(

p − m
m

)

(2x)p−2m(−1)mhp (37)

3I have now noticed that when Chris set a question like this a few years ago he gave a hint like this

7

where M(p) denotes the correct end point for even and odd p. Now, we mess around
a bit: lets concentrate on the even sum and let p = 2q and j = q − m, so

e2xh−h2

= odd +

∞
∑

q=0

q
∑

j=0

1

(2j)!(q − j)!
22jx2j(−1)jh2q (38)

and hence

H2q(x) =

q
∑

j=0

(2q)!

(2j)!(q − j)!
22jx2j(−1)j (39)

giving

a2j =
(2q)!

(2j)!(q − j)!
22j(−1)j (40)

and

a2j+2 =
(2q)!

(2j + 2)!(q − j − 1)!
22j+2(−1)j+1 (41)

= −4
q − j

(2j + 2)(2j + 1)
a2j = 2

2j − 2q

(2j + 2)(2j + 1)
a2j (42)

which, since α = 2q and n in the notes is our 2j, after all these changes of index, is
what we want!

Problem Sheet 18

1. Bessel’s equation reads
x2y′′ + xy′ + (x2 − ν2)y = 0.

In the lectures it was shown that inserting a Frobenius series of the form

y(x) =
∞

∑

n=0

anx
n+s

with a0 6= 0 leads to a1 = 0, the indical equation, s2 − ν2 = 0, and the recursion
relation

an+2 = − an

(n + s + 2)2 − ν2
.

For ν = 0 this leads to two equal roots s = 0 and so the method only provides one
solution. Use the recursion relation to compute the an for this case.

Solution:So this is just a question of applying the recursion relation with ν = 0,
keeping in mind that s = ν in this case:

an+2 = − an

(n + 2)2
. (43)
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Now, a0 6= 0 and a1 = 0; for convenience, let a0 = 1, we can always multiply by an
overall arbitrary constant afterwards; n = 0 gives

a2 = −1

4
(44)

and n = 2

a4 = − 1

16
a2 =

1

16 × 4
(45)

and n = 6

a6 = − 1

36
a4 =

1

36 × 16 × 4
. (46)

Hence, it is clear

a2m = (−1)m 1

22m(m!)2
(47)

So we now have

y = C

∞
∑

m=0

(−1)m x2m

22m(m!)2
(48)

2. Use the method of Frobenius to obtain the general solution to the ODE

4xy′′(x) + 2y′(x) + y(x) = 0.

Solution:This question is actually in problem sheet 17 above.

3. In each of the following cases find a second solution in the form y(x) = u(x)v(x)
where u(x) is a solution and v(x) is to be determined.

(a) y′′ + 5y′ + 6y = 0; find one solution using the auxiliary and the other using the
y = uv ansatz.

(b) (1 − x2)y′′ − 2xy′ = 0 one solution is u(x) = 1.

Remark: Part b) is the α = 0 case of Legendre’s equation.

Solution:For the first one, use the auxhillary equation to find that one solution of
y′′ + 5y′ + 6y = 0 is u(x) = e−2x. Write y(x) = u(x)v(x) = e−2xv(x). y′(x) =
e−2xv′(x)−2e−2xv(x), y′′(x) = e−2xv′′(x)−4e−2xv′(x)+4e−2xv(x) so the ODE becomes
y′′(x) + 5y′(x) + 6y(x) = e−2x (v′′(x) + (5 − 4)v′(x)) = 0 or v′′(x) + v′(x) = 0 (a first
order ODE for v′) with solution v′(x) = Ce−x. Integrating v(x) = C1e

−x+C2, relabel
C1 = −C, so a second solution of the ODE is y(x) = e−3x.

Now, for the second part, (1−x2)y′′−2xy′ = 0, u(x) = 1. Taking y(x) = u(x)v(x) =
v(x) gives (1 − x2)v′′ − 2xv′ = 0 a first order ODE for v′, i.e.

dv′

v′
=

2x dx

1 − x2

9

Integrating
log v′ = − log(1 − x2) + c,

or,

v′ =
C

(1 − x2)
=

C

2

(

1

1 − x
+

1

1 + x

)

.

Integrate again, relabel C1 = 1
2
C,:

v = C1 log

(

1 + x

1 − x

)

+ C2.

A second solution is thus y(x) = log 1+x
1−x

.

4. The Legendre polynomials Pn(x) are generated by

Φ(x, h) =
1√

1 − 2xh + h2
=

∞
∑

n=0

hnPn(x) (49)

Write down the first four Legendre polynomials and verify that they are orthogonal

∫ 1

−1

Pn(x)Pm(x)dx = 0 (50)

for n 6= m.

Solution:So first we need to work out the polynomials, recall the binomial expansion

1√
1 − ǫ

= 1 +
1

2
ǫ +

3

8
ǫ2 +

5

16
ǫ3 + O(epsilon4) (51)

hence

Φ(x, h) =
1√

1 − 2xh + h2

= 1 +
1

2
(2xh − h2) +

3

8
(2xh − h2)2 +

5

16
(2xh − h2)3 + O(h4)

= 1 +
1

2
(2xh − h2) +

3

8
(4x2h2 − 4xh3) +

5

16
8x3h3 + O(h4) (52)

Therefore, we can read off the Legendre polynomials

P0(x) = 1
P1(x) = x

P2(x) =
3

2
x2 − 1

2

P3(x) = −3

2
x +

5

2
x3 (53)
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Finally, we need to check that these are all orthogonal; mixing even and odd will give
an odd polynomial, which will integrate to zero over [−1, 1]; so

∫ 1

−1

P0P2 dx =
1

2

∫ 1

−1

(3x2 − 1)dx = 0 (54)

and
∫ 1

−1

P1P3 dx =
1

2

∫ 1

−1

(−3x2 + 5x4)dx = 0 (55)
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