
231 Outline Solutions Tutorial Sheet 13, 14 and 15.12

20 March 2008

Problem Sheet 13

1. Express the following functions as Fourier integrals:

(a)

f(x) =

{

cos x |x| < π
2

0 |x| > π
2

(b)

f(x) =
sin x

x

Solution:(a) Writing f as a Fourier integral f(x) =
∫ ∞

−∞
dk eikx f̃(k). We require

the Fourier transform:

f̃(k) =
1

2π

∫ ∞

−∞

dk e−ikx f(x) =
1

2π

∫ π

2

−π

2

dk e−ikx eix + e−ix

2

=
1

4π

(

ei(1−k)x

i(1 − k)
+

ei(−1−k)x

i(−1 − k)

)
∣

∣

∣

∣

π

2

−π

2

=
1

4π

[

ie−ikπ/2 + ieikπ/2

i(1 − k)
+

−ie−ikπ/2 − ieikπ/2

i(−1 − k)

]

=
1

4π
2 cos

(

kπ

2

) (

1

1 − k
+

1

1 + k

)

=
1

π
cos

(

kπ

2

)

1

1 − k2
.

Therefore

f(x) =
1

π

∫ ∞

−∞

dk cos

(

kπ

2

)

eikx

1 − k2
.

Remark: f̃(k) is well behaved at k = ±1. (b)

sin x

x
=

1

2

∫ 1

−1

dk eikx.

Remark: In the lectures it was shown that the Fourier transform of a square pulse is

proportional to sin k/k and so it follows that the Fourier transform of the sin x/x is
proportional to the pulse and, for example, integrating quickly gives the constant of
proportionality.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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2. Prove the following properties of the Fourier transform

(a) The Fourier transform of an even function is even.

(b) f̃ ′(k) = ikf̃(k).

Solution:(a) Assume that f is even, i.e. f(−x) = f(x), then

f̃(−k) =
1

2π

∫ ∞

−∞

dx eikxf(x).

make the change of variables y = −x:

f̃(−k) =
1

2π

∫ ∞

−∞

dy e−ikyf(−y) =
1

2π

∫ ∞

−∞

dy e−ikyf(y) = f̃(k).

(b) here an integration by parts is required

f̃ ′(k) =
1

2π

∫ ∞

−∞

dx e−ikxf ′(x) = e−ikxf(x)
∣

∣

∞

−∞
−

∫ ∞

−∞

dx(−ik)e−ikxf(x) = ikf̃(k),

assuming that the boundary terms vanish.

3. In the lectures (quite a while ago) it was shown that the scalar field

φ(r) =
1

r
,

where r =
√

x2 + y2 + z2 is harmonic except at the origin. In fact it can be shown
that

∇2φ(r) = −4πδ3(r). (A)

Formally apply Gauss’ theorem to the vector field F = ∇φ to show that

∫

r<a

dV ∇2 φ = −4π.

This is clearly consistent with (A). Another treatment would replace the singular
scalar field φ with a sequence of smooth scalar fields, e.g.

φn(r) =
n√

n2r2 + 1
.

Prove that
∫

R3

dV ∇2φn(r) = −4π.

Solution:F = ∇φ so that ∇2φ = div F. Applying Gauss’ theorem
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∫

r<a

dV ∇2φ =

∫

r<a

dV div F =

∫

r=a

F · dA.

F = −r/r3 and F · n = −1/a2 and the surface are is 4πa2 giving
∫

r<a

dV ∇2φ = −4π.

∂xφn = −1
2
n(n2r2 + 1)−3/22xn2, and similarly for ∂yφn and ∂zφn. Therefore

∇φn = − n3r

(n2r2 + 1)3/2
.

∫

r<a

dV ∇2φn =

∫

r=a

∇φn · dA = − n3 4πa3

(n2a2 + 1)3/2
→ −4π

as a → ∞.

Problem Sheet 14

1. Inside an integral, what is
d

dx

1

1 + ǫθ(x)
(1)

for θ(x) the usual Heaviside function and |ǫ| < 1.

Solution:There are two ways to do this, we can either expand the fraction as a power
series or we can try and evaluate it inside an integral. First the first way, using the
usual expansion of 1/(1 + x) for x < 1

1

1 + ǫθ(x)
=

∞
∑

n=0

[−ǫθ(x)]n (2)

Now, we just use the fact that θ(x)n = θ(x) for n a positive integer; note that we
have to be careful with the first term in the series which doesn’t contain a θ(x) factor
since n is zero. Hence

1

1 + ǫθ(x)
= 1+θ(x)

∞
∑

n=1

(−ǫ)n = 1+θ(x)

∞
∑

n=0

(−ǫ)n−θ(x) = 1−θ(x)+
1

1 + ǫ
θ(x) (3)

where we have added and taken away the missing term in the sum. Hence,

d

dx

1

1 + ǫθ(x)
=

d

dx
[1 − θ(x) +

1

1 + ǫ
θ(x)] =

1

1 + ǫ
δ(x) − δ(x) (4)

The other way is to do the calculation inside an integral: with a < 0 and b > 0

I =

∫ b

a

dxf(x)
d

dx

1

1 + ǫθ(x)
(5)
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Now, integrating by parts

I = f ′(x)
1

1 + ǫθ(x)

]b

a

−
∫ b

a

dxf ′(x)
1

1 + ǫθ(x)
(6)

Next, we split the integral into two and use the fact θ(x) is zero for negative x and
one for positive x. So,

I =
1

1 + ǫ
f(b) − f(a) −

∫ 0

a

dxf ′(x) − 1

1 + ǫ

∫ b

0

dxf ′(x) (7)

and, using the Fundamental Theorem of Calculus

I =
1

1 + ǫ
f(b)−f(a)−f(0)+f(a)− 1

1 + ǫ
f(b)+

1

1 + ǫ
f(0) =

(

1

1 + ǫ
− 1

)

f(0) (8)

which implies
d

dx

1

1 + ǫθ(x)
=

1

1 + ǫ
δ(x) − δ(x) (9)

as before.

2. Compute

(a)
∫ ∞

−∞
dx ex δ(x + 1)

(b)
∫ 1

−3
dx δ(x2 − 3x + 2)

(c)
∫ ∞

−∞
dx cos x δ′(x)

(d)
∫ 1

0
dx δ

(

sin 1
x

)

.

Solution:

(a)
∫ ∞

−∞
dx ex δ(x + 1) = e−1.

(b) Use

δ (h(x)) =
∑

i

δ(x − xi)

|h′(xi)|
,

where the xis are roots of h. In this case h(x) = x2 − 3x + 2 = (x − 2)(x − 1)
with roots x1 = 2 and x2 = 1. This is a problem since x = 1 is one of the limits
of integration, in fact

∫ 0

−∞

dxδ(x) (10)

isn’t defined, and so the answer here is that the integral isn’t defined. Say
instead we had been asked

∫ 3

−3

dx δ(x2 − 3x + 2) (11)
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then both roots are in the integral and we would use h′(x) = 2x − 3 so that
h′(1) = −1, giving |h(1)| = 1 and h′(2) = 1 which gives

δ(x2 − 3x + 2) = δ(x + 1) + δ(x2)

and
∫ 3

−3

dx δ(x2 − 3x + 2) = 2.

(c)
∫ ∞

−∞

dx cos xδ′(x) = −
∫ ∞

−∞

dx (− sin x) δ(x) = 0

Integrating by parts and using sin 0 = 0.

(d) Use formula for δ(h(x)), here h(x) = sin(1/x) which is zero for 1/x = nπ
(n ∈ Z). h′(x) = −x−2 cos(1/x) and since | cos nπ| = 1

δ (h(x)) =
∑

n 6=0

δ
(

x − 1
nπ

)

π2n2
.

Now 1/(nπ) ∈ (0, 1) for all positive n which gives

∫ 1

0

dx δ

(

sin
1

x

)

=
1

π2

∑

n>0

1

n2
.

The sum on the RHS is ζ(2) = π2/6 (see Q3 Sheet 11) and so

∫ 1

0

dx δ

(

sin
1

x

)

=
1

6
.

3. Obtain a general solution to

(a) y′ − 3y = e−x

(b) y′ + y cotx = cos x

(c) (x + 1)y′ + y = (x + 1)2

Solution:

(a) Rewrite as
e−3xy′ − 3ye−3x = e−4x

or
(

e−3xy
)′

= e−4x

and then integrate.
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(b) the quickest thing to do is multiply across by the sine

sin xy′ + cosxy = sin x cos x (12)

and rewritting
(sin xy)′ = (sin2 x)′ (13)

hence
sin xy = sin2 x + C (14)

or
y = sin x + Ccosec x (15)

(c) (x + 1)y′ + y = (x + 1)2 can again be rewritten

[(x + 1)y]′ = x2 + 2x + 1 (16)

so

(x + 1)y =
1

3
x3 + x2 + x + C (17)

or

3y =
x3 + 3x2 + 3x + 1

x + 1
+

C

x + 1
= (x + 1)2 +

C

x + 1
(18)

with a redefinition of C to get the nice devision at the end, another way to do
this would have been to change variables to z = x + 1 at the start.

4. Obtain the general solutions of the following ODEs:

(a) y′′ + 5y′ + 6y = 0

(b) y′′ − 2y′ + y = 0

Solution:

(a) y′′ + 5y′ + 6y = 0 so substitute eλx to get the auxiliary equation

λ2 + 5λ + 6 = 0 (19)

so λ = −2 and λ = −3 giving solution

y = C1e
−2x + C2e

−3x (20)

(b) y′′ − 2y′ + y = 0 gives auxiliary equation

λ2 − 2λ + 1 = 0 (21)

which has λ = 1 as a repeated root, so

y = C1e
x + C2xex (22)
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Problem Sheet 15

1. Obtain the general solutions of the ODEs

(a) y′′ + 3y′ − 4y = e−x

(b) y′′ + 3y′ − 4y = e−4x

(c) y′′ + 3y′ − 4y = sinh x

Solution:Auxiliary equation gives λ2 + 3λ − 4 = 0 roots λ = −4, λ = 1 so we get

y(x) = C1e
−4x + C2e

x (23)

solving the corresponding homogeneous equation

(a) Now substitute y = Ce−x to get

C − 3C − 4C = 1 (24)

so C = −1/6 and

y(x) = C1e
−4x + C2e

x − 1

6
e−x (25)

(b) This time the right hand side matches one of the complementary solutions, so
we substitute y = Cx exp (−4x), the terms with xs outside the exponential all
cancel and we get

−8C + 3C = 1 (26)

or C = −1/5 giving

y(x) = C1e
−4x + C2e

x − 1

5
xe−4x (27)

(c) The particular integral is

y′′ + 3y′ − 4y = sinh x =
1

2
(ex − e−x) (28)

and so we split it into two parts. The first is y′′ + 3y′ − 4y = 1
2
ex, let y = Cxex

giving C(2 + 3) = 1
2

and so C = 1
10

. The second part is y′′ + 3y′ − 4y = −1
2
e−x,

y = Ce−x so that C(1−3−4) = −1
2
, hence C = 1/12. The solution is therefore

y = C1e
−4x + C2e

x +
1

10
xex +

1

12
e−x (29)
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2. Obtain the general solution of the ODE

y′′(x) + 3y′(x) + 2y(x) = f(x)

where f is the periodic function defined by

f(x) =







0 −π < x < −a
1 −a < x < a
0 a < x < π

where a ∈ (0, π) is a constant and f(x + 2π) = f(x).

Solution:First the complementary function, the auxiliary equation λ2+3λ+2 = 0 has
roots λ = −1 and λ = −2. The right hand side is not in the form of an exponential,
but can be expanded as a Fourier series

f(x) =
a

pi
+

∑

n 6=0

sin an

πn
einx (30)

so we want to solve

y′′(x) + 3y′(x) + 2y(x) =
sin an

πn
einx (31)

Letting
y = Ceinx (32)

gives (−n2 + 3in + 2)C = sin an/πn. The constant, n = 0 case is solve by y = a/2π
so

y = C1e
−x + C2e

−2x +
a

2π
+

∑

n 6=0

1

−n2 + 3in + 2

sin an

πn
einx (33)

3. Obtain the general solutions of the ODEs

(a) y′′ + y = f(x), where f is the periodic square wave defined by

f(x) =

{

1, 0 < x < π
−1, − π < x < 0

and f(x + 2π) = f(x)

(b) y′′ + y′ + 3y = e−|x|.

Solution:

(a) y′′(x) + y(x) = f(x). CF: yc = A sin x + B cos x. To find the PI write f(x) as a
Fourier series (obtained in the lectures)

f(x) =
4

π

∑

n>0, n odd

1

n
sin nx =

2

πi

∑

n odd

einx

n
.
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First find a PI for y′′ + y = einx. Trying y = Ceinx gives (−n2 +1)C = 1 so that
C = 1/(1 − n2) unless n = ±1.

n = 1: Try y = Cxeix so that y′′ = (−xeix + 2ieix)C. Therefore a particular
solution to y′′ + y = eix is y = −1

2
ixeix.

n = −1: Similarly particular solution to y′′ + y = e−ix is 1
2
ixe−ix

PI for full problem

yp =
2

πi

∑

n odd, n 6= ±1

einx

n(1 − n2)
+

2

πi
· −1

2
ixeix − 2

πi
· 1

2
ixe−ix

=
4

π

∑

n > 2 odd

sin nx

n(1 − n2)
− 2x

π
cos x.

(b) Complimentary function: y′′ + y′ + 3y = 0. Auxiliary equation: λ2 + λ + 3 = 0
with roots λ = −1

2
± 1

2
i
√

11.

y = e−
1

2
x

(

A cos(
1

2

√
11x) + B sin(

1

2

√
11x)

)

.

PI: write f(x) = e−|x| as a Fourier integral

f(x) =

∫ ∞

−∞

dk eikx f̃(k) =

∫ ∞

−∞

dk eikx 1

π

1

1 + k2
.

PI for y′′ + y′ + 3y = eikx. Trying y = Ceikx gives C(−k2 + ik + 3)eikx = eikx so
that C = 1/(−k2 + ik + 3). Therefore a PI to the full problem is

yp(x) =
1

π

∫ ∞

−∞

dk eikx 1

1 + k2

1

(−k2 + ik + 3)
.
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