
231 Outline Solutions Tutorial Sheet 1, 2 and 3.12

9 November 2007

Problem Sheet 1

1. Rewrite the integral

I =

∫ 1

0

dx

∫ ex

1

dy φ(x, y) (1)

as a double integral with the opposite order of integration.

Solution:The range of y values: 1 ≤ y ≤ e. For a fixed y, x has the range log y ≤
x ≤ 1. Hence

I =

∫ e

1

dy

∫ 1

log y

dx φ(x, y). (2)

2. Evaluate

I =

∫

D

dxdyxexy (3)

where D is given by 0 < x < 1 and 2 < y < 4.

Solution:So rewriting as an iterated integral

I =

∫

D

dxdyxexy =

∫ 1

0

dx

∫ 4

2

dyxexy (4)

and integrating from the middle

∫ 1

0

dx

∫ 4

2

dyxexy =

∫ 1

0

dx

(

x
1

x
exy

)4

2

=

∫ 1

0

dx
(

e4x − e2x
)

=
1

4
e4 − 1

2
e2 +

1

4
(5)

Here we cunningly made the integration easier by doing the y integration first, in
fact is shouldn’t make any difference to the answer if the integration is done in the
other order, it is definately harder thought:

I =

∫

D

dxdyxexy =

∫ 4

2

dy

∫ 1

0

dxxexy =

∫ 4

2

dy

(

1

y2
− 1

y2
ey +

1

y
ey

)

(6)

where we did the x integral using integration by parts, Now integrating by parts

∫ 4

2

dy
1

y
ey =

1

y
ey]42 +

∫ 4

2

dy
1

y2
ey (7)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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so, substituting this in and cancelling

∫ 4

2

dy

(

1

y2
− 1

y2
ey +

1

y
ey

)

=
1

y
ey]42 +

∫ 4

2

dy

(

1

y2

)

=
1

4
e4 − 1

2
e2 +

1

4
(8)

as before.

3. Evaluate

I =

∫

D

dxdy(x + y) (9)

where D is given by 0 < y < 1 and 2y < x < 2.

Solution:So, write as an iterated integral

I =

∫

D

dxdy(x + y) =

∫ 1

0

dy

∫ 2

2y

dx(x + y) (10)

and integrate from the inside out

∫ 1

0

dy

∫ 2

2y

dx(x + y) =

∫ 1

0

dy

(

1

2
x2 + xy

)2

2y

=

∫ 1

0

dy
(

2 + 2y − 4y2
)

= 3 − 4

3
=

5

3
(11)

4. Change the order of integration of

I =

∫ 1/2

0

dy

∫

√
1−4y2

−
√

1−4y2

dxy (12)

and evaluate.

Solution:So
x = ±

√

1 − 4y2 (13)

implies

y = ±1

2

√
1 − x2 (14)

and it is easy to see from drawing a picture that

I =

∫ 1/2

0

dy

∫

√
1−4y2

−
√

1−4y2

dxy =

∫ 1

−1

dx

∫ 1

2

√
1−x2

0

dyy (15)

Now, integrating we get

∫ 1

−1

dx

∫ 1

2

√
1−x2

0

dyy =
1

8

∫ 1

−1

dx(1 − x2) =
1

8

(

2 − 2

3

)

=
1

6
(16)
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Problem Sheet 2

1. Consider the integral

I =

∫

D

dV φ (17)

where D is the interior of the ellipsoid defined by

x2

a2
+

y2

b2
+

z2

c2
= 1. (18)

Write down I as an iterated triple integral.

Solution:Upper surface of ellipsoid ia

z = +c

√

1 − x2

a2
− y2

b2
. (19)

whereas the lower surface is

z = −c

√

1 − x2

a2
− y2

b2
(20)

The surfaces join at z = 0 where x2

a2 + y2

b2
= 1, this provides range of x and y

integrations: y = −b
√

1 − x2

a2 to y = +b
√

1 − x2

a2 and x = −a to x = a:

I =

∫ a

−a

dx

∫ +b
√

1−x2

a2

−b
√

1−x2

a2

dy

∫ +c
√

1−x2

a2
−

y2

b2

−c
√

1−x2

a2
−

y2

b2

dz φ(x, y, z). (21)

2. The Gaussian integral formula
∫ ∞

−∞

dx e−x2

=
√

π (22)

can be derived easily with the help of polar coordinates. The trick is to note that
the square of the integral can be recast as a double integral over R2:

(
∫ ∞

−∞

dx e−x2

)2

=

∫

R2

dA e−x2−y2

. (23)

By changing to polar coordinates evaluate this integral.

Solution:After changing to polars and making sure to include the Jacobian J = r
∫

R2

dA e−x2−y2

=

∫ 2π

0

dθ

∫ ∞

0

dr re−r2

(24)

and then do this integral by substituting u = r2 so du = 2rdr to give

I2 = π

∫ ∞

0

due−u = π (25)

as required.
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3. Compute the Jacobian of the transformation from cartesian to parabolic cylinder
coordinates

x =
1

2
(u2 − v2), y = uv. (26)

Solution:Well

J =

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

u −v
v u

∣

∣

∣

∣

∣

∣

∣

∣

= u2 + v2. (27)

4. Determine the volume of the region enclosed by the cylinder x2 + y2 = 4 and the
planes y + z = 4 and z = 0. Suggestion: Use Cartesian coordinates.

Solution:Range of integration: z = 0 to z = 4 − y, y = −
√

4 − x2 to y = +
√

4 − x2

and x = −2 to x = 2. Thus the volume is

V =

∫ 2

−2

dx

∫ +
√

4−x2

−
√

4−x2

dy

∫ 4−y

0

dz 1 =

∫ 2

−2

dx

∫ +
√

4−x2

−
√

4−x2

dy (4 − y), (28)

the z integral being trivial. The y integral is also straightforward:

V =

∫ 2

−2

dx 8
√

4 − x2 = 8 · 2π = 16π. (29)

The final integral can be evaluated by elementary means: either make the standard
substitution (x = 2 sin θ) or simply note that the integral represents the area of a
semi-circle of radius 2.

Problem Sheet 3

1. Evaluate the iterated integrals

(a)
∫ 1

0
dx

∫ 2

0
dy(x + 3)

(b)
∫ log 3

0
dx

∫ log 2

0
dyex+y

(c)
∫ log 2

0
dx

∫ 1

0
dyxyey2x

(d)
∫ π

0
dθ

∫ 1−sin θ

0
drr2 cos θ

Solution:The first three are very straight-forward, you treat x as a constant when
doing the dy integral and visa versa:

∫ 1

0

dx

∫ 2

0

dy(x + 3) =

∫ 1

0

dx(x + 3)y]20 = 2

∫ 1

0

dx(x + 3) = x2 + 6x
]1

0
= 7 (30)
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and
∫ log 3

0

dx

∫ log 2

0

dyex+y =

∫ log 3

0

dx ex+y
]log 2

0
= 2

∫ log 3

0

dxex = 4 (31)

and, for the next one use u = y2,

∫ log 2

0

dx

∫ 1

0

dyxyey2x =
1

2

∫ log 2

0

dx

∫ 1

0

duxeux (32)

=
1

2

∫ log 2

0

dx eux]10 =
1

2

∫ log 2

0

dx(ex − 1) (33)

=
1

2
(ex − x)log 2

0 =
1

2
(2 − log 2 − 1) =

1 − log 2

2
(34)

The last one is different in that it doesn’t have constant limits, but, again, you just
do the integrals one by one:

∫ π

0

dθ

∫ 1−sin θ

0

drr2 cos θ =

∫ π

0

dθ cos θ
r3

3

]1−sin θ

0

=
1

3

∫ π

0

dθ cos θ(1 − sin θ)3 = 0

(35)
where we know the integral is zero because the integrand is odd about θ = π/2.

2. Compute the element of area for elliptic cylinder coordinates which are defined as

x = a cosh u cos v (36)

y = a sinh u sin v. (37)

Solution:δA = Jδuδv with

J =

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

a sinh u cos v −a cosh u sin v
a cosh u sin v a sinh u cos v

∣

∣

∣

∣

∣

∣

∣

∣

= a2(sinh2 u cos2 v + cosh2 u sin2 v) (38)

This can be simplified a bit:

J = a2(sinh2 u cos2 v + cosh2 u sin2 v) = a2[sinh2 u(1 − sin2 v) + cosh2 u sin2 v]
= a2[sinh2 + sin2 v(cosh2 − sinh2 u)] (39)

Using cosh2 u − sinh2 u = 1 gives J = a2(sinh2 u + sin2 v).

3. Compute the area and centroid of the plane region enclosed by the cardioid r(θ) =
1 + cos θ (r and θ are polar coordinates).

Solution:Use polar coördinates to evaluate area integral; θ ranges from 0 to 2π and
r ranges from 0 to 1 + cos θ and the Jacobian is J = r

A =

∫

D

dV =

∫ 2π

0

dθ

∫ 1+cos θ

0

dr r
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=

∫ 2π

0

dθ
1

2
(1 + cos θ)2

=
1

2

∫ 2π

0

dθ (1 + 2 cos θ + cos2 θ)

=
1

2
(2π + 0 + π) =

3

2
π, (40)

since cos θ integrates to zero and the average value of cos2 θ is 1
2
.

Similarily

∫

D

xdV =

∫ 2π

0

dθ

∫ 1+cos θ

0

dr r2 cos θ

=
1

3

∫ 2π

0

dθ
1

2
(1 + cos θ)3 cos θ

=
1

3

∫ 2π

0

dθ (cos θ + 3 cos2 θ + 3 cos3 θ + cos4 θ)

=
1

3

(

3π + 0 +
3

4
π

)

=
5

4
π, (41)

and so x̄ = 5/6. By symmetry ȳ = 0.

4. Evaluate the double integral
∫ ∫

R

dAx(1 + y2)−1/2 (42)

where R is the region in with x ≥ 0 and y ≥ 0 enclosed by y = x2, y = 4 and x = 0.

Solution:So the first thing is to iterate the integral and put in the limits. For given
y x goes from 0 to

√
y so we get

∫ ∫

R

dAx(1 + y2)−1/2 =

∫ 4

0

dy

∫

√
y

0

dx
x

√

1 + y2
=

1

2

∫ 4

0

dy
y

√

1 + y2
(43)

and then use u = 1 + y2 to get

∫ ∫

R

dAx(1 + y2)−1/2 =
1

4

∫ 17

1

dy
1√
u

=
1

2

√
u

]17

1

=

√
17 − 1

2
(44)

5. Show that away from the origin the vector field

F =
r̂

r2
=

r

r3
(45)

has zero divergence. Here, as usual, r is the position vector r = (x, y, z) and r̂ is the
corresponding unit vector r̂ = (x/r, y/r, z/r). r =

√

x2 + y2 + z2, again, as usual.
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Solution:So

∇ · F =
∂

∂x

x

r3
+

∂

∂y

y

r3
+

∂

∂y

y

r3
(46)

Using the product rule

∂

∂x

x

r3
=

r3 − 3x(x/r)r2

r6
=

1

r3
− 3x2

r5
(47)

and so

∇ · F =
3

r3
− 3(x2 + y2 + z2)

r5
= 0 (48)

using r2 = x2 + y2 + z2. Note by the way we have used

∂

∂x
r =

∂

∂x

√

x2 + y2 + z2 =
x

r
(49)

using the chain rule.
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