
231 Outline Solutions Tutorial Sheet 10, 11 and 12.12

2 March 2008

Problem Sheet 10

1. Find the Fourier series representation of the sawtooth function f defined by f(x) = x
for −π < x < π and f(x + 2π) = f(x).

Solution:f is odd so an = 0 for all n.

bn =
1

π

∫ π

−π

dx x sin nx = − x cos nx

nπ

∣

∣

∣

π

π
+

1

π

∫ π

−π

cos nx

n
.

The integral on the RHS is zero since it is just a cosine integrated over a full period
(or n periods). Thus bn = −2 cos(nπ)/n = −2(−1)n/n which gives

f(x) = −2

∞
∑

n=1

(−1)n

n
sin nx.

2. Establish that
∫ π

−π

dx sin mx sin nx =

∫ π

−π

dx cos mx cos nx = 0,

if m 6= n (both m and n are integers).

Solution:In this question m and n will be taken as positive integers. The problem
can be tackled using complex exponentials or trig identities. Using the identity

2 sin A sin B = cos(A − B) − cos(A + B),

∫ π

−π

dx sin mx sin nx =
1

2

∫ π

−π

dx [cos(m − n)x − cos(m + n)x] ,

which is zero (integral of cosine over full periods) provided m − n and m + n are
non-zero. To show that

∫ π

−π

dx cos mx cos nx = 0,

use
2 cos A cos B = cos(A + B) + cos(A − B).

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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3. The periodic function f is defined by

f(x) =

{

sin x 0 < x < π
0 −π < x < 0

and f(x + 2π) = f(x).

(a) Represent f(x) as a Fourier series.

Solution:This function is neither odd nor even, though the only non-zero bn

coefficient is b1 = 1
2

(since f(x) = 1
2
sin x + | sin x| and | sinx| is even). Now to

the an coefficients

an =
1

π

∫ π

−π

dx cos nx f(x) =
1

π

∫ π

0

dx cos nx sin x

This can be computed via complex exponentials or through the identity

2 sin A cos B = sin(A + B) + sin(A − B):

an =
1

2π

∫ π

0

dx [sin(1 + n)x + sin(1 − n)x] = − 1

2π

(

cos(1 + n)x

1 + n
+

cos(1 − n)x

1 − n

)
∣

∣

∣

∣

π

0

.

Now cos(1 + n)π = cos(1 − n)π = −(−1)n, and so

an = − 1

2π
(−(−1)n − 1)

(

1

1 + n
+

1

1 + n

)

=
1

π
(1 + (−1)n)

1

1 − n2
.

This is ambiguous for n = 1; it is trivial to check that a1 = 0. Putting everything
together

f(x) =
1

π
+

2

π

∑

n>0,even

cos nx

1 − n2
+

1

2
sin x,

or

f(x) =
1

π
+

2

π

∞
∑

m=1

cos 2mx

1 − 4m2
+

1

2
sin x.

(b) Derive the remarkable formula

1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ ... =

1

2
.

Solution:f(0) = 0 leads to the amazing formula

1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ ... =

1

2
.
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Problem Sheet 11

1. Express the following periodic functions (l = 2π) as complex Fourier series

(a)

f(x) =







0 −π < x < −a
1 −a < x < a
0 a < x < π

where a ∈ (0, π) is a constant.

Solution:f(x) =
∑

n∈Z cne
inx with

cn =
1

2π

∫ π

−π

dx e−inxf(x) =
1

2π

∫ a

−a

dx e−inx

so that c0 = a/π and

cn =
1

2π

e−inx

−in

∣

∣

∣

∣

a

−a

=
1

πn

eian − e−ian

2i
=

1

πn
sin an.

(b)

f(x) =
1

2 − eix
.

Solution:This can be expanded as a geometric series which is exactly the complex
Fourier series!

f(x) =
1

2 − eix
=

1

2

1

1 − 1
2
eix

=
1

2

∞
∑

n=0

1

2n
einx.

2. Show that the periodic function f defined by f(x) = |x| − 1
2
π for −π < x < π and

f(x + 2π) = f(x) has the Fourier series expansion

f(x) = −4

π

∑

n>0, odd

cos nx

n2
.

Solution:f is even so bn = 0 for all n.

an =
1

π

∫ π

−π

dx cos nx

(

|x| − 1

2
π

)

.

A quick calculation gives a0 = 0. For n > 0 use the fact that cosnx integrates to
zero over a full period

an =
1

π

∫ π

−π

dx |x| cos nx =
2

π

∫ π

0

dx x cos nx
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=
2

π

(

x sin nx

n

∣

∣

∣

∣

π

0

−
∫ π

0

dx
sin nx

n

)

= 0 +
2

π

cos nx

n2

∣

∣

∣

π

0
=

2

π

((−1)n − 1)

n2
.

Thus an = 0 if n is even and an = −4/(πn2) if n odd.

3. Use the Fourier series given in question 2 to compute the following sums

S1 = 1 − 1

32
− 1

52
+

1

72
+

1

92
− 1

112
− 1

132
+ ...

S2 = 1 +
1

34
+

1

54
+

1

74
+ ...

Remark: With calculations of this kind it makes sense to try a quick numerical check
of your answer.

Solution:To compute S1 set x = π/4 in the Fourier series quoted in question 1

f
(π

4

)

= −4

π

1√
2
S1.

Since f(π
4
) = −π

4
one has

−π

4
= − 1√

2

4

π
S1,

so that

S1 =

√
2π2

16
.

ii) The average value of |f |2 is

1

2π

∫ π

−π

dx |f(x)|2 =
1

2π

∫ π

−π

dx

(

|x| − 1

2
π

)2

=
1

π

∫ π

0

dx

(

x − 1

2
π

)2

.

A short calculation gives that this is equal to π2/12. Applying Parseval’s theorem

π2

12
=

1

4
|a0|2 +

1

2

∞
∑

n=1

(

|an|2 + |bn|2
)

=
1

2
· 16

π2
S2,

and so

S2 =
π4

96
.
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4. Compute the Fourier transform of f(x) = e−a|x| where a is a positive constant. Use
the result to show that

∫ ∞

−∞

dp
cos p

1 + p2
=

π

e
.

Solution:

f̃(k) =
1

2π

∫ ∞

−∞

dx e−ikx f(x)

=
1

2π

∫ ∞

−∞

dx e−ikx e−a|x| =
1

2π

[
∫ ∞

0

dx e−ikx−ax +

∫ 0

−∞

dx e−ikx+ax

]

=
1

2π

[

−e−x(a+ik)

a + ik

∣

∣

∣

∣

∞

0

− ex(a−ik)

a − ik

∣

∣

∣

∣

0

−∞

]

=
1

2π

[

1

a + ik
+

1

a − ik

]

=
1

π

a

a2 + k2
.

f can be represented as a Fourier integral

f(x) =

∫ ∞

−∞

dk eikx f̃(k) =
a

π

∫ ∞

−∞

dk
eikx

a2 + k2
.

Setting a = 1 and x = 1 gives

e−1 =
1

π

∫ ∞

−∞

dk
eik

1 + k2
.

Taking the real part (and multiplying by π)

π

e
=

∫ ∞

−∞

dk
cos k

1 + k2
.
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Problem Sheet 12

1. The Riemann zeta function is defined as follows

ζ(s) =
∞
∑

n=1

1

ns
(s > 1).

(a) By applying Parseval’s theorem for Fourier series to the sawtooth f(x) = x for
−π < x < π compute

ζ(2) =

∞
∑

n=1

1

n2
.

Solution:From earlier calculations, the Fourier coeficients for the sawtooth are
an = 0 and bn = −2(−1)n/n. Applying Parsevals theorem:

1

2π

∫ π

−π

dx x2 =
1

2

∑

n=1

4

n2
= 2ζ(2)

The LHS is just π2/3 which gives ζ(2) = π2/6.

(b) Consider the Fourier expansion of f(x) = x2, −π < x < π, and use the result
to show that

ζ(4) =
∞
∑

n=1

1

n4
=

π4

90
.

Solution:Consider f(x) = x2 − π < x < π an even function so that bn = 0.
The an can be obtained in the usual way (although one must integrate by parts
twice). An alternative way is to integrate the Fourier series for the sawtooth

x = −2
∞
∑

n=1

(−1)n sin nx

n
− π < x < π

Integration with respect to x yields

x2

2
= 2

∞
∑

n=1

(−1)n cos nx

n2
+ C,

where C is a constant of integration. This constant can be determined by
integrating both sides from x = −π to x = π:

x3

6

∣

∣

∣

∣

π

−π

= 2πC,

which gives C = π2/6. According to Parseval’s theorem the average value of
|f(x)|2 is given by the sum

1

4
|a0|2 +

1

2

∞
∑

n=1

(

|an|2 + |bn|2
)

,
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where an and bn are the Fourier coefficients of f . For f(x) = x2, an = 4(−1)n/n2

for n > 0 and a0 = 4C = 2π2/3. The average value of |f(x)|2 = x4 is given by

1

2π

∫ π

−π

x4 dx =
π4

5
.

Applying Parseval’s theorem

π4

5
=

π4

9
+ 8ζ(4),

and so

ζ(4) =
π4

8

(

1

5
− 1

9

)

=
π4

90
.

2. Determine the Fourier transform of the Gaussian function

f(x) = e−αx2

,

where α is a positive constant.

Solution:Completing the square
∫ ∞

−∞

dx e−αx2+βx =

∫ ∞

−∞

dx e−α(x− β

2α
)2+ 1

4
β2/α.

Making the change of variables y = x − β
2α

gives

∫ ∞

−∞

dx e−αx2+βx = e
1

4
β2/α

∫ ∞

−∞

dy e−αy2

= e
1

4
β2/α

√

π

α
,

using the standard Gaussian integral formula. This derivation assumes that β is
real. However, we assume the result is valid for complex β to compute the Fourier
transform of f(x) = e−αx2

:

f̃(k) =
1

2π

∫ ∞

−∞

dx e−ikxe−αx2

=
1

2π
·
√

π

α
e−

1

4
k2/α,

by formally taking β = −ik.

3. Compute

(a)
∫ ∞

−∞

dx x2 δ(x − 3)

(b)
∫ ∞

−∞

dx δ(x2 + x)
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(c)
∫ 2

0

dx ex δ′(x − 1)

(d)
∫ ∞

0

dx e−axδ(cos x)

(e)
∫ ∞

0

dx δ(eax cos x).

(f)
d

dx
eaθ(x).

where a is a constant.

Solution:(a)
∫∞

−∞
dx x2δ(x − 3) = 32 = 9.

(b)Use

δ (h(x)) =
∑

i

δ(x − xi)

|h′(xi)|
,

where the xi are roots of h. Here h(x) = x2 + x = x(x + 1) with roots x1 = 0 and
x2 = −1. h′(x) = 2x + 1 and so h′(0) = 1, h′(−1) = −1. This gives δ(x2 + x) =
δ(x) + δ(x + 1)

∫ ∞

−∞

dx δ(x2 + x) = 2.

(c) Integrate by parts:

∫ 2

0

dx ex δ′(x − 1) = exδ(x − 1)|20 −
∫ 2

0

dx ex δ(x − 1) = −e.

(d) h(x) = cos x has zeros at x = 1
2
π, 3

2
π, 5

2
π etc. and the derivative of cosx is equal

to 1 or −1 at these points. Therefore

∫ ∞

0

dx e−axδ(cos x) =
∞
∑

n=0

e−a( 1

2
π+nπ) = e−

1

2
aπ

∞
∑

n=0

e−anπ =
e−

1

2
aπ

(1 − e−aπ)
,

the last step used the standard geometric series formula. The result may be rewritten
in terms of the hyperbolic sine.

∫ ∞

0

dx e−axδ(cos x) =
1

2 sinh 1
2
aπ

.

(e) h(x) = eax cos x, h′(x) = aeax cos x − eax sin x. The zeros of h are the same as in
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the previous problem. At a zero |h′(x)| = eax. This implies that the integral leads to
the same geometric sum as in part (d). (f) First you need to reexpress everything so

that it is linear in θ(x), we can’t differenciate powers of θ(x). So

exp aθ =
∞
∑

n=0

θ(x)nann!

= 1 +
∞
∑

n=1

θ(x)nann!

then, using θn = θ, easy to check from the definition of θ, we get

exp aθ = 1 + θ
∞
∑

n=1

an

n!

= 1 + θ

(

∞
∑

n=0

θ(x)nan

n!
− 1

)

= 1 + θ (ea − 1)

and hence
d

dx
eaθ(x) =

d

dx
[1 + θ (ea − 1)] = δ(x) (ea − 1)
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