231 Tutorial Sheet 7¹²

22 November 2007

Useful facts:

• To evaluate the line integral for a parameterized curve:

$$\int_{c} \mathbf{F} \cdot \mathbf{dl} = \int_{t_1}^{t_2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt \tag{1}$$

where t_1 and t_2 are the parameter values corresponding to the beginnig and end of the curve.

- A vector field **F** is **conservative** if **F** =grad ϕ for some scalar field ϕ . ϕ is often called a **potential** for **F**.
- A vector field is path-independent if its line integral between any two points is independent of the path.
- An irrotational field on a simply connected domain is conservative.
- To find a potential by integration: let $\partial_x \phi = F_1$ and integrate to find ϕ determined up to an arbitrary function of y and z, substitute back into $\partial_y \phi = F_2$ to determine it up to an arbitrary function of z and then determine this, up to an arbitrary constant, by substituting into $\partial_z \phi = F_3$
- To evaluate the line integral for a parameterized curve:

$$\int_{c} \mathbf{F} \cdot \mathbf{dl} = \int_{t_1}^{t_2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$
(2)

where t_1 and t_2 are the parameter values corresponding to the beginnig and end of the curve.

• To evaluate the surface integral for a parameterized surface:

$$\int \int_{S} \mathbf{F} \cdot \mathbf{dA} = \int \int_{S} \mathbf{F} \cdot \left(\frac{d\mathbf{r}}{du} \times \frac{d\mathbf{r}}{dv}\right) du dv \tag{3}$$

Questions

1. Which of the following vector fields are conservative?

(a)
$$\mathbf{F} = -yz \sin x \, \mathbf{i} + z \cos x \, \mathbf{j} + y \cos x \, \mathbf{k}.$$

(b) $\mathbf{F} = \frac{1}{2}y \, \mathbf{i} - \frac{1}{2}x \, \mathbf{j}.$
(c) $\mathbf{F} = \frac{1}{2}(\mathbf{B} \times \mathbf{r})$ where \mathbf{B} is a constant vector.

2. Find a potential for

$$\mathbf{F} = (e^{yz} + zye^{xy})\mathbf{i} + (xze^{yz} + xze^{xy})\mathbf{j} + (xye^{yz} + e^{xy})\mathbf{k}$$
(4)

- 3. Compute the flux of the vector field $\mathbf{F} = (x + x^2)\mathbf{i} + y\mathbf{j}$ out of the cylinder defined by $x^2 + y^2 = 1$ and $0 \le z \le 1$.
- 4. Find the flux of $\mathbf{F} = z^3 \mathbf{k}$ upwards through the part of the sphere $x^2 + y^2 + z^2 = a^2$ above the z = 0 plane.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.