231 Tutorial Sheet 6: due Thursday November 22^{12}

15 November 2007

Useful facts:

• To evaluate the line integral for a parameterized curve:

$$\int_{c} \mathbf{F} \cdot \mathbf{dl} = \int_{t_1}^{t_2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$
(1)

where t_1 and t_2 are the parameter values corresponding to the beginnig and end of the curve.

- A vector field **F** is **conservative** if **F** =grad ϕ for some scalar field ϕ . ϕ is often called a **potential** for **F**.
- A vector field is path-independent if its line integral between any two points is independent of the path.
- An irrotational field on a simply connected domain is conservative.
- To find a potential by integration: let $\partial_x \phi = F_1$ and integrate to find ϕ determined up to an arbitrary function of y and z, substitute back into $\partial_y \phi = F_2$ to determine it up to an arbitrary function of z and then determine this, up to an arbitrary constant, by substituting into $\partial_z \phi = F_3$

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

²Including material from Chris Ford, to whom many thanks.

Questions

- 1. For each of the following vector fields compute the line integral $\int_C \mathbf{F} \cdot \mathbf{d} \mathbf{l}$ where C is the semi-circle of radius two around the origin in the xy-plane with y positive, taken anti-clockwise.
 - (a) $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j}$
 - (b) $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$.
- 2. Evaluate the line integrals $\int_C \mathbf{F} \cdot \mathbf{dl}$ for
 - (a) $\mathbf{F} = (x^2y, 4, 0)$ with C given by $\mathbf{r}(t) = (\exp(t), \exp(-t), 0)$ with t going from zero to one;
 - (b) $\mathbf{F} = (z, x, y)$ with C given by $\mathbf{r}(t) = (\sin t, 3\sin t, \sin^2 t)$ with tgoing from zero to $\pi/2$.
 - (c) $\mathbf{F} = \lambda(x, y)$ with $\lambda = (x^2 + y^2)^{-3/2}$ and with C given by $\mathbf{r}(t) = (e^t \sin t, e^t \cos t)$ with t going from zero to one.
- 3. For each of these fields determine if **F** is conservative, if it is, by integration or otherwise, find a potential: ϕ such that $\mathbf{F} = \nabla \phi$.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F} = 3y^2\mathbf{i} + 6xy\mathbf{j}$
 - (c) $\mathbf{F} = e^x \cos y \mathbf{i} e^x \sin y \mathbf{j}$
 - (d) $\mathbf{F} = (\cos y + y \cos x)\mathbf{i} + (\sin x x \sin y)\mathbf{j}$
- 4. Consider the 'point vortex' vector field

$$\mathbf{F} = \frac{y}{x^2 + y^2}\mathbf{i} - \frac{x}{x^2 + y^2}\mathbf{j}.$$

Show that curl $\mathbf{F} = 0$ away from the z-axis. Establish that \mathbf{F} is *not* conservative in the (non simply-connected) domain $x^2 + y^2 \ge \frac{1}{2}$. Is \mathbf{F} conservative in the domain defined by $x^2 + y^2 \ge \frac{1}{2}$, $y \ge 0$? If so obtain a scalar potential for \mathbf{F} .