231 Tutorial Sheet 3: due Friday November 2'2

26 October 2007
Useful facts:
e The Jacobian in three-dimensions:
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e Some trigonometric integrals are required. In particular you may quote the integrals:
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Two are zero by symmetry, the other two can be computed through standard trigono-
metric identities or via complex exponentials:
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e For a scalar field ¢ the gradiant is
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e For a vector field F = (Fy, Fy, F3) the divergence is
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1Conor Houghton, houghton@maths.tcd. ie, see also http://www.maths.tcd.ie/ houghton/231
2Including material from Chris Ford, to whom many thanks.

Questions

1. Evaluate the iterated integrals
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. Compute the element of area for elliptic cylinder coordinates which are defined as

a cosh u cosv (8)

asinhusinv. (9)

. Compute the area and centroid of the plane region enclosed by the cardioid r(6) =

14 cos@ (r and @ are polar coordinates).

. Evaluate the double integral
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where R is the region in with > 0 and y > 0 enclosed by y = 2%, y = 4 and x = 0.

. Show that away from the origin the vector field

-z (11)

has zero divergence. Here, as usual, r is the position vector r = (z,y, z) and T is the
corresponding unit vector t = (x/r,y/r, z/r). r = \/2% + y> + 22, again, as usual.



