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Useful facts:

• The iterated integral is the integral expressed as a series of nested one-dimensional
integrals.

• The two-dimensional area element dA = dxdy = rdrdθ

• The Jacobian in two-dimensions:
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Questions

1. Consider the integral

I =

∫

D

dV φ (3)

where D is the interior of the ellipsoid defined by
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+

y2
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+
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= 1. (4)

Write down I as an iterated triple integral.

2. The Gaussian integral formula

∫

∞

−∞

dx e−x2

=
√

π (5)

can be derived easily with the help of polar coordinates. The trick is to note that
the square of the integral can be recast as a double integral over R2:
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=
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dA e−x2
−y2

. (6)

By changing to polar coordinates evaluate this integral.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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3. Compute the Jacobian of the transformation from cartesian to parabolic cylinder
coordinates

x =
1

2
(u2 − v2), y = uv.

4. Determine the volume of the region enclosed by the cylinder x2 + y2 = 4 and the
planes y + z = 4 and z = 0. Suggestion: Use Cartesian coordinates.
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