231 Tutorial Sheet 14.¹²

2 Febuary 2008

Useful facts:

• The Dirac delta function:

$$\int_{-\infty}^{\infty} dx \, f(x)\delta(x) = f(0)$$

• If h(x) is a continuous function

$$\int_{-\infty}^{\infty} dx f(x) \delta[h(x)] = \sum_{x_i: f(x_i)=0} \frac{f(x_i)}{|h'(x_i)|}$$

- To solve the equation y' + py = f multiply across by an integrating factor $\exp\left(\int^t d\tau p(\tau)\right)$ and express the right hand side as the derivative of a product.
- To solve the equation ay'' + by' + cy = 0, with a, b and c constants, use an exponential substitution $y = \exp(\lambda x)$ and solve for λ . If this only gives one solution, then $y = x \exp(\lambda x)$ is also a solution.

Questions

1. Inside an integral, what is

$$\frac{d}{dx}\frac{1}{1+\epsilon\theta(x)}$$

for $\theta(x)$ the usual Heaviside function and $|\epsilon| < 1$.

2. Compute

(a)
$$\int_{-\infty}^{\infty} dx \ e^x \ \delta(x+1)$$

(b)
$$\int_{-3}^{1} dx \ \delta(x^2 - 3x + 2)$$

(c)
$$\int_{-\infty}^{\infty} dx \ \cos x \ \delta'(x)$$

(d)
$$\int_0^1 dx \,\delta\left(\sin\frac{1}{x}\right)$$
.

3. Obtain a general solution to

(a)
$$y' - 3y = e^{-x}$$

- (b) $y' + y \cot x = \cos x$
- (c) $(x+1)y' + y = (x+1)^2$
- 4. Obtain the general solutions of the following ODEs:

(a)
$$y'' + 5y' + 6y = 0$$

(b) $y'' - 2y' + y = 0$

(1)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.