231 Tutorial Sheet 11.'2

1 February 2007
Useful facts:

e A function f(x) has period [ if f(x +1) = f(x), it is odd if f(—z) = —f(z) and even
it f(—) = f(z).

e A function with period [ has the Fourier series expansion
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e A function with period [ has the Fourier series expansion
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e Parceval’s formula:
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e The Fourier integral or Fourier transform:
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!Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ houghton/231
?Including material from Chris Ford, to whom many thanks.

1



Questions

1. Express the following periodic functions (I = 27) as complex Fourier series

(a)

0 7<zr<—a
flz)=¢ 1 —a<z<a
0 a<zx<m

where a € (0,7) is a constant.

(b)

fl) = —
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2. Show that the periodic function f defined by f(z) = |z| — 37 for —7 < = < 7 and
f(x + 2m) = f(z) has the Fourier series expansion

fla) = _é Z cosnx.

T n?
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3. Use the Fourier series given in question 2 to compute the following sums
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Remark: With calculations of this kind it makes sense to try a quick numerical check
of your answer.

4. Compute the Fourier transform of f(z) = e~%*l where @ is a positive constant. Use

the result to show that -
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