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Problem Sheet 7

1. Which of the following vector fields are conservative?

(a) F = −yz sin x i + z cos x j + y cos x k.

(b) F = 1

2
y i − 1

2
x j.

(c) F = 1

2
(B × r) where B is a constant vector.

Solution:

(a) F = ∇yz cos x so F is conservative.

(b) curl F = k 6= 0 so F is not conservative.

(c) A short calculation gives curl F = B so F is not conservative. Remark: 1

2
(B×r)

is a vector potential for the constant vector field B.

2. Compute the flux of the vector field F = (x + x2)i + yj out of the cylinder defined
by x2 + y2 = 1 and 0 ≤ z ≤ 1.

Solution:As we have seen before, r(u, v) = cos ui + sin uj + vk giving

∂r

∂u
×

∂r

∂v
= cos ui + sin uj. (1)

and

F ·
∂r

∂u
×

∂r

∂v
= (x + x2) cosu + y sin u = cos2 + cos3 u + sin2 u = 1 + cos3 u. (2)

and so, noting that the F is perpendicular to the normal at both ends and so we
need only include the curved surface

∫

S

F · dA =

∫

1

0

dv

∫

2π

0

du (1 + cos3 u) = 2π, (3)

since the cos3 u integral is zero by symmetry.

Note: This problem can be solved by noting that x2i makes no contribution (by
symmetry) and F = xi + yj has flux 2π since F · n = 1.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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3. Find the flux of F = z3k upwards through the part of the sphere x2 + y2 + z2 = a2

above the z = 0 plane.

Solution:To parametrize the sphere choose (u, v) = (θ, φ), that is, spherical polar
angles. Since the radius r = a this gives x(u, v) = a sin u cos v, y(u, v) = a sin u sin v,
z(u, v) = a cos u with 0 ≤ θ ≤ π/2 and 0 ≤ φ < 2π. Since F only has a non-zero
z-component we just need

(

∂r

∂u
×

∂r

∂v

)

3

=
∂x

∂u

∂y

∂v
−

∂y

∂u

∂x

∂v
= a2(cos u cos v sin u cos v + cos u sin v sin u sin v)
= a2 cos u sinu, (4)

which is positive. So the orientation is upwards. Now Fz = z3 = a3 cos3 u, and so

∫

S

F · dA = a5

∫ 1

2
π

0

du

∫

2π

0

dv cos4 u sin u

= 2πa5

∫ 1

2
π

0

du cos4 u sin u

= 2πa5 · −
cos5 u

5

]
1

2
π

0

=
2πa5

5
. (5)

4. Let D be a plane region with area A whose boundary is a piecewise smooth closed
curve C. Use Green’s theorem to prove that the centroid (x̄, ȳ) of D is

x̄ =
1

2A

∮

C

dy x2

ȳ = −
1

2A

∮

C

dx y2. (6)

Use this result to compute the centroid of a semi-circle (this was determined in the
lectures using the more standard formula).

Solution:The centroid (x̄, ȳ) of a plane region D is given by

x̄ =

∫

D
dA x

A
ȳ =

∫

D
dA y

A
. (7)

If the boundary of D is a piecewise smooth closed curve C, Green’s theorem reads
∫

D

dA

(

∂g(x, y)

∂x
−

∂f(x, y)

∂y

)

=

∮

C

(dx f(x, y) + dy g(x, y)) , (8)

where f(x, y) and g(x, y) are function with continuous first derivatives and the curve
is oriented anti-clockwise. Now taking g(x, y) = 1

2
x2 and f(x, y) = 0 yields

∫

D

dA x =
1

2

∫

C

dy x2. (9)
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Inserting this into the formula for x̄ gives

x̄ =
1

2A

∮

C

dyx2 (10)

Similarly the choice f(x, y) = 1

2
y2, g(x, y) = 0 gives

ȳ = −
1

2A

∮

C

dx y2 (11)

Here C comprises the semi-circular arc plus the line segment joining (−1, 0) and
(1, 0). The integral

∫

C
dy x2 is zero since the positive x part of the arc integral

cancels the negative x part. Also the integral along the line segment is zero. This
implies that x̄ = 0.

For the other integral,
∫

C
dx y2, only the arc contributes since y = 0 along the line

segment. Now

∫

C

dx y2 = −

∫

C,clockwise
dx y2 = −

∫

1

−1

dx (1 − x2) = −
4

3
. (12)

Since A = 1

2
π it follows that

ȳ =
4

3

2A
=

4

3π
. (13)
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Problem Sheet 8

1. Find the flux of F = xi + yj + k across the portion of the paraboloid

r(u, v) = u cos vi + u sin vj + (1 − u2)k (14)

with 1 ≤ u ≤ 2 and 0 ≤ v ≤ 2π, oriented to give a positive answer.

Solution:So,

∂r

∂u
= cos vi + sin vj− 2uk

∂r

∂v
= −u sin vi + u cos vj (15)

giving

∂r

∂u
×

∂r

∂v
=





2u2 cos v
2u2 sin v

u



 (16)

Now, on the parabola
F = u cos vi + u sin vj + k (17)

so, taking the dot product, the flux, φ, is

φ =

∫

2

1

du

∫

2π

0

dv
(

2u3 cos2 v + 2u3 sin2 v + u2
)

=
1

2
+

1

2
= 1 (18)

which is a positive answer, so the orientation was correct.

2. Find the flux of F = e−yi − yj + x sin zk across the portion of the paraboloid

r(u, v) = 2 cos vi + sin vj + uk (19)

with 0 ≤ u ≤ 5 and 0 ≤ v ≤ 2π, oriented to give a positive answer.

Solution:And again with the paraboloid:

∂r

∂u
= k

∂r

∂v
= −2 sin vi + cos vj (20)

giving

∂r

∂u
×

∂r

∂v
=





− cos v
−2 sin v

0



 (21)
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On the parabola
F = e− sin vi − sin vj + 2 cos v sin uk (22)

and the flux is

φ =

∫

5

0

du

∫

2π

0

dv
(

− cos ve−sinv + 2 sin2 v
)

(23)

Now,
∫

2π

0

dv cos ve−sinv = 0 (24)

there are lots of ways to see this, one way is to note that the integrand is odd about
the point v = π/2 and a change of variable and the periodicity could be used to make
the integral symmetric about this point

∫

2π

0

dv cos ve−sinv =

∫

3π/2

−π/2

dv cos ve−sinv (25)

and then let w = v−π/2. This leaves the other bit of the integral, which we do using
the usual

2 sin2 x = 1 − cos 2x (26)

giving
φ = 10φ (27)

3. Use Green’s Theorem to evaluate
∮

c

(y2dx + x2dy) (28)

where C is the square with vertice (0, 0), (1, 0), (1, 1) and (0, 1) and oriented anti-
clockwise.

Solution:By Green’s theorem

∮

c

(y2dx + x2dy) =

∫

1

0

dx

∫

1

0

dy(2x− 2y) =

∫

1

0

dx(2x − 1) = 0 (29)

4. Calculate directly and using Stoke’s Theorem

∫

S

F · dS (30)

where F = (z − y)i + (z + x)j − (x + y)k and S is the paraboloid z = 9 − x2 − y2

oriented upwards with z > 0.

Solution:So, to calculate directly, choose some parameterization

r = ρ cos φi + ρ sin φj + (9 − ρ2)k (31)
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works. Now

∂r

∂φ
= −ρ sin φi + ρ cos φj

(32)

frac∂r∂φ = cos φi + sin φj − 2ρk
(33)

and, choosing the other order to make the normal upward points

∂r

∂v
×

∂r

∂u
=





2ρ2 cos φ
2ρ2 sin φ

−ρ



 (34)

Now, writing this as (2ρx, 2ρy, ρ) and doing the dot product with F we are left with
only terms which are linear in x or y and since the φ integral goes all the way around,
we see the answer is zero. Next, using Stokes

∫

S

F · dS =

∮

c

curlF · dl (35)

Now, C is a circle of radius three, so l = 3 cos φi+3 sin φj so dl = (−3sinφ, 3 cos φ, 0)
and curlF = (−2, 2, 2) giving an integrand which is once again linear in sine and
cosine and, once again, the answer zero.

6



Problem Sheet 9

1. Using Gauss’ theorem or otherwise compute the flux of the vector field F = x3i +
y3j + z3k through the hemisphere x2 + y2 + z2 = 1, z ≥ 0 with the orientation taken
upwards. What is the flux out of the whole sphere?

Solution:Let S be the closed surface comprising the hemisphere x2 + y2 + z2 = 1,
z ≥ 0 and the disk (needed to close the surface) z = 0, x2 + y2 ≤ 1. Using Gauss’
theorem the flux of F out of S is

∫

S

F · dA =

∫

D

div F dV = 3

∫

D

(x2 + y2 + z2) dV,

where D is the region enclosed by S. This integral can be worked out through
spherical polar coordinates or just by splitting D into small spherical half-shells of
volume 2πr2δr:

∫

S

F · dA = 2π

∫

1

0

dr r2 3r2 =
6π

5
.

Now the flux out of the disk is zero since here F is perpendicular to the outward
normal n = −k. Thus the flux through the hemisphere is 6π/5. The flux out of the
whole sphere is 12π/5.

2. Consider, again, the vector field

F =
r

r3
, r = xi + yj + zk.

(a) Compute the flux of F out of a sphere of radius a centred at the origin.

(b) Compute the flux of F out of the box 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

(c) Compute the flux of F out of the box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Solution:

(a) Flux integral trivial since F · n is constant over the sphere (n is the outward
normal). Here F · n = 1/a2. Therefore

∫

C
F · dA = 4πa2 1

a2 = 4π. Note that
this is independent of the radius of the sphere.

(b) We know divF = 0. Therefore Gauss’ theorem implies that the flux out of the
box is zero. Note that this result is very difficult to obtain via a direct surface
integral computation.

(c) Naively, Gauss’ theorem also gives a zero flux in this case. However, this is not
correct. Indeed, an indiscriminate use of Gauss’ theorem would also give a zero
flux in part i). The point is that in parts i) and iii) (but not ii) ) the ‘inside’
region contains the origin where F is singular. As in part i) the correct answer to
this question is 4π. This can be obtained by combining Gauss’ theorem with the
result of the direct calculation of part a). To do this remove a sphere (centred at

7



the origin) of radius less than one from the box. In this region F is smooth and
so Gauss’ theorem implies that the flux out of this region is zero. However this
flux comprises two parts; the flux out of the box (which we wish to compute)
and the flux into the cut sphere (which from part i) is −4π). Therefore the flux
out of the box must be 4π.

3. Obtain a vector potential for the solenoidal vector field: F = xi + yj− 2zk

Solution:Use the formula A(r) =
∫

1

0
dt F(tr)× rt. Now F = xi+ yj−2zk = r−3zk

so that

A(r) =

∫

1

0

dt − 3ztk × rt = −3

∫

1

0

dt t2 (zxj − zyi) = zyi − zxj.

4. Obtain a vector potential for the solenoidal vector field: F = exk.

Solution:A = exj by inspection. Using the formula actually gives a different vec-
tor potential, this is possible because the vector potential is only defined up to an
irrotational field,

A(r) =

(

ex +
(1 − ex)

x

)

j − y

(

ex

x
−

(ex − 1)

x2

)

i.

The two vector potentials differ by a gradient

AII − AI =
1 − ex

x
j − y

(

ex

x
−

(ex − 1)

x2

)

i = ∇φ.

where

φ = y
1 − ex

x
.

5. Find a Hodge decomposition for the vector field F = −yi + xj + zk.

Solution:So the Hodge decomposition is F = ∇φ + curl A which implies △φ = 1. A
convenient choice here is

φ =
1

2
z2

leaving curlA = −yi+xj but we have looked at examples like this before, −yi+xj =
k × r so A = 2k.
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