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Problem Sheet 16

1. Obtain the general solutions of the ODEs

(a) ¥+ 5y + 6y = e
(b) y// 4 5y/ + 6y — 6—2:(:
(¢) y" + 5y’ + 6y =sinhax

Solution: Auxiliary equation gives A2 + 5\ + 6 = 0 roots A = —2, A = —3 so we get

y(SL’) = 016_296 + 026_3x (1)

solving the corresponding homogeneous equation

(a)

(c)

Now substitute y = C'e” to get
C+5C+6C=1 (2)

so C'=1/12 and

1
y(SL’) = 016_290 + 026_3m + Eem (3)
This time the right hand side matches one of the complementary solutions, so
we substitute y = Cxexp (—2x), the terms with xs outside the exponential all
cancel and we get

—4C —10C =1 (4)
or C'= —1/14 giving

1
y(r) = Cre " + Che ™ — ﬁxe_zw (5)

PI: y" + 5y + 6y = sinhx = 1(e® — e7®). Pl for y” + 5y’ + 6y = 1e*, y = Ce”
C(l+54+6)= %, ie. C'= i. PI for y" + 5y’ + 6y = —%e‘””, y = Ce " so that

C(1—=5+6)=—1, ie. C=—1 PIfor full problem y,(z) = Le” — 1e7™.

!Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ houghton/231
2Including material from Chris Ford, to whom many thanks.



2. Obtain the general solution of the ODE

y'(x) +3y'(z) + 3y(z) = f(z)
where f is the periodic function defined by f(z) = |z| — 47 for —7 < z < 7 and
f(x+2m) = f(x).
Solution:CF: auxiliary equation A\? 4+ 3\ + 3 = 0 with roots \ = —% + Y3 giving

2
ye(z) = e 2" <A cos ? + Bsin ?az) :

PI: use Fourier expansion of f

inx

4 CcoSNT 2 e
f(:L’) __; Z n2 ——; Z n2 .

n odd >0 n odd ez

PI for y" + 3y’ + 3y = ™*; trying y = Ce™® gives (—n? + 3in + 3)C' = 1. P1I for full
problem

inx

2 e
- Z n?(—n? + 3in +3)
n odd ez

3. Obtain the general solutions of the ODEs

(a) ¥ +y' +3y=0
(b) v +y = f(z), where f is the periodic square wave defined by

1, O<z<m _
ro={ 4 T mdseen - s
(c) ' +y +3y=ell.
Solution:

(a) y"+y +3y = 0. Auxiliary equation: A2+ \+3 = 0 with roots \ = —% + %z'\/ll.
i, 1 1
y=e 2 Acos(§v11$)+351n(§\/11x) .

(b) v"(x) +y(z) = f(x). CF: y. = Asinx + Bcosz. To find the PI write f(z) as a
Fourier series (obtained in the lectures)

4 1 . 2 e'ne
f(a:)—; Z —sinng = — Z -

n>0, n odd n odd

2



First find a PI for 3" +y = €. Trying y = Ce™® gives (—n?+1)C = 1 so that
C =1/(1 —n?) unless n = +1.

n =1 Try y = Cxe™ so that y" = (—xe'® + 2ie®®)C. Therefore a particular

solution to y” +y = €' is y = —Jize™.
n = —1: Similarly particular solution to y” +y = e is Lize™™
PI for full problem
2 ¢ina > 1. . 2 1 .
b= m o 2 aaoey tm el e
n odd, n # +£1
4 sin nx 2z
= = ———— — “cosz.
T Z n(l—n?) 7 *
n > 2 odd

(c) CF: general solution of part (a), PI: write f(x) = e~I*l as a Fourier integral

f(:)s):/_oo dk ™ f(k):/_oo T

- - Tl+ k2

PI for y" + ¢ + 3y = €. Trying y = Ce'*® gives C'(—k? + ik + 3)e™* = e¥** 50
that C = 1/(—k? + ik + 3). Therefore a PI to the full problem is

1

_ ikx
y”(x)_w/_oo dk ¢ 1+ k2 (—k2+ik+3)

Problem Sheet 17

1. Solve 2%y” + 4xy’ +y = 0. Solution:x?y” + 4xy’ +y = 0. The standard substitution
T = e* gives
d*y dy
— 4—-1)—= =0. 6
Ty ©)

Auxiliary equation A2 + 3\ + 1 = 0 with roots \ = —% + %\/5

Yy = 016_(%_%\/5)2 + 026_(%+%\/5)Z = Cll’_(%—i—%\/g) + CQ.:C_(%_%\/E) (7)

2. Solve z%y" + 4xy' +y = 2°. Solution:So the same substitution gives

Py L dy
- J 3_ — 5z 8
d?z * dz ty=e (8)

So, we already have the complementary function for this, we just need the particular
integral, substitute y = C'exp (52) giving

25C + 15C + C = 1 (9)



giving

y = Cz= G2V 4 Oy G2VE) 4 %:EE’ (10)
This isn’t such a good question, the one I meant to ask was something like
2*y" — 3xy' — by = 2° (11)
After substitution this gives
Py dy
— 74— 5y = 12
d?z dz y=e (12)

So, the complementary equation is

M4 5A+5=0 (13)
leading to A = 5 or A = —1. Now, to get the particular integral, we need to substitute
y = Czexp (5z). Hence

10C —4C' =1 (14)
so C'=1/6 and
5,0 15
y=Cix +?+6I log z (15)

Another question along the same lines would be

2y + 3xy’ +y =0 (16)
Here substituting z = e* yields
d*y dy
— 4+ 3-1)-= =0.
d?z + )dz Ty

Auxiliary equation A\? + 2\ + 1 = 0 with two equal roots A = —1 so that y(x) =
Cie 4+ Coze ™ = Cra™ ! + Chatlog x.

Problem Sheet 18
1. Use the recursion relation

2(n — a)ay,
n+1)(n+2)

or the generating function

_ 2xh—h? _ C hn
®(x,h) =e => — H(x)
n=0
to obtain polynomial solutions of Hermite’s equation y” — 2zy’ + 2ay = 0 for o = 3,
4 and 5.



2. Use the recursion relation
2(n — a)ay,

(n+1)(n+2)

Apy2 =

or the generating function

Oz, h) ="M =) %Hn(x)

n=0

to obtain polynomial solutions of Hermite’s equation y” — 2zy’ + 2ay = 0 for o = 3,
4 and 5.

Solution:Ok lets use the generating function, so, we want everything up to h°

Oz, h) = XN

1 1 1
= 1+ (2zh—h*) + 5(2xh — h?)? + 6(2:ch — h%)3 + —2°2°h° + O(h

1 214
+ —(2zh — h7) 130

24

and, continuing to drop high powers in h
1 1 1
®(z,h = 142zh—h?+ 5(4$2h2 — 4zh® + h*) + 6(8£E3h3 — 122°h* + 62h°) + ﬂ(16x4h4 — 32

Hence

Py(z) = 8z°—122
) 162" — 4822 + 12
Ps(z) = 322° —1602° + 120z (19)

3. Legendre’s equation can be written
(1—2%)y" =22y +ay =0,

where « is a constant. Consider a series solution of the form

o
= E anx”.
n=0

Determine a recursion relation for the a, coefficients. For what values of o does
Legendre’s equation have polynomial solutions?

Solution:y(x) = > 0 azz™, y'(z) = Z " ona "ty (x) = Y0 on(n — 1)a,z"?
Therefore zy'(z) = > 07 nazaz™ and 2%y’ (x) = ZZOZO n(n —1)a,z"

Relabel y"(z) (n = m + 2)

y"( Z Amya(m +2)(m + 1)z Zam+2 m + 2)(m + 1)z

m=—2 m=0



The last step used that the first two terms in the sum are zero. The ODE can be
written

(1—2)y" () —2zy (z)+ay(z Z 2" [ama2(m +2)(m+ 1) — apym(m — 1) — 2ma,, + aa,) =0
m=0

giving the recursion relation

m(m+1) —
(m+2)(m+1)

Am+42 = m-

If « is of the form n(n+1) (n =0, 1,2,...) one of the solutions of the ODE will be a
polynomial since the recursion relation will terminate.

. (Frobenius training exercise) For each of the following equations obtain the indicial
equation for a Frobenius series of the form

o
= g a,x"t*
n=0

(a) ¥"+y =0
(b) 2?y" + 32y’ +y =0
(c) dzy” + 2y +y =0.

In case a) use the method of Frobenius to obtain the general solution. In case b)
use the method of Frobenius to find one solution (the method fails to give the other
solution).

Solution:(a) Frobenius: y = > 7, a,™"* where s is to be determined. Differentiating
twice gives y”(z) = Y. (n+s)(n+s—1)2"™2 (most singular term in ODE). Relabel
this as ¥’ (z) = aps(s—1)z* 2 4a1(s+1)sz* 1+ > amia(m+s+2)(m+s+1)z™+s
and so

y'(z) +ylx) = aos(s —Da* % 4 ay(s + 1)sz**
+ Zx lamee(m+s+2)(m+s+1) +a,) =0.

Take ag = 1. The indicial equation is
s(s—1) =0,
with roots s =0 and s = 1.

s =0 For this s can take a; # 0 but for now set a; = 0.



Recursion relation: a,42(n +2)(n+1) +a, =0 or

Qp
Upyo = — ,
2T+ 2)(n+1)
which is particularly easy to solve ag = 1, as = —%, ay = 1;3' 15 e A2p = ((_23? The
solution is
(1
y(x) = Z Ny = Cosa.

Including a; # 0 gives y(z) = cosz + aq sinx. The s = 1 solution is also y(z) = sin .
The general solution is
y(r) = Acosx + Bsinz.

(b) 2%y” + 3zy’ +y = 0. Frobenius y = Y _ a,2"™, zy/ = > _ an(n + s)a™,
22y ano an(n + s)(n + s — 1)2"™*. No ‘most singular’ term or terms! No
recursion relation! Indicial equation? (need ao contributions) z?y” + 3xy’ +y =
apz® [s(s — 1) + 3s + 1] + higher powers = 0 so that s* + 2s + 1 = 0 with two equal
roots s = —1. Since there is no recursion relation the a, (n > 0) are all zero.
y(x) = 27! is one solution (the other solution is not a Frobenius series).

(c) Write y = >, a, 2"
Y =30 a, (n+s)a"™, Yy =3""a, (n+s)(n+s—1) 2" Now:
y(x) = apsx® L+ Y 0 jansi(n+ 14 s)a™te
zy"(x) = aps(s — 1)ax* 1+ 370 amer(m + 1+ s)(m+ s)z™*s.
doy" +2y +y = ao [4s(s — 1) + 2s]

—I—Z (m+1+s8)(m+ 8)ami1 +2(m+ 1+ 8)ami + ap) 2™°

)a'm—i-l + Am

1
dags(s — 5):55_1 + mz {4(771 +1+s)(m+s+ 3

Set ag = 1 Indicial equation: s(s — 1) = 0 with roots s = 0 and s =

1
2 2°

. Use the recursion relation to show that the functions H,, defined through the gener-
ating function

_ 2zh—h? OO h"
d(x,h) =e = 2% — Ha(x)
satisfy Hermites equation
y" —2xy — 2ny = 0.

Solution:Done separately.



