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Problem Sheet 16

1. Obtain the general solutions of the ODEs

(a) y′′ + 5y′ + 6y = ex

(b) y′′ + 5y′ + 6y = e−2x

(c) y′′ + 5y′ + 6y = sinh x

Solution:Auxiliary equation gives λ2 + 5λ + 6 = 0 roots λ = −2, λ = −3 so we get

y(x) = C1e
−2x + C2e

−3x (1)

solving the corresponding homogeneous equation

(a) Now substitute y = Cex to get

C + 5C + 6C = 1 (2)

so C = 1/12 and

y(x) = C1e
−2x + C2e

−3x +
1

12
ex (3)

(b) This time the right hand side matches one of the complementary solutions, so
we substitute y = Cx exp (−2x), the terms with xs outside the exponential all
cancel and we get

−4C − 10C = 1 (4)

or C = −1/14 giving

y(x) = C1e
−2x + C2e

−3x − 1

14
xe−2x (5)

(c) PI: y′′ + 5y′ + 6y = sinh x = 1
2
(ex − e−x). PI for y′′ + 5y′ + 6y = 1

2
ex, y = Cex

C(1 + 5 + 6) = 1
2
, i.e. C = 1

24
. PI for y′′ + 5y′ + 6y = −1

2
e−x, y = Ce−x so that

C(1 − 5 + 6) = −1
2
, i.e. C = −1

4
. PI for full problem yp(x) = 1

24
ex − 1

4
e−x.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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2. Obtain the general solution of the ODE

y′′(x) + 3y′(x) + 3y(x) = f(x)

where f is the periodic function defined by f(x) = |x| − 1
2
π for −π < x < π and

f(x + 2π) = f(x).

Solution:CF: auxiliary equation λ2 + 3λ + 3 = 0 with roots λ = −3
2
±

√
3

2
i giving

yc(x) = e−
3

2
x

(

A cos

√
3

2
+ B sin

√
3

2
x

)

.

PI: use Fourier expansion of f

f(x) = −4

π

∑

n odd >0

cos nx

n2
= −2

π

∑

n odd ∈Z

einx

n2
.

PI for y′′ + 3y′ + 3y = einx; trying y = Ceinx gives (−n2 + 3in + 3)C = 1. PI for full
problem

yp = −2

π

∑

n odd ∈Z

einx

n2(−n2 + 3in + 3)
.

3. Obtain the general solutions of the ODEs

(a) y′′ + y′ + 3y = 0

(b) y′′ + y = f(x), where f is the periodic square wave defined by

f(x) =

{

1, 0 < x < π
−1, − π < x < 0

and f(x + 2π) = f(x)

(c) y′′ + y′ + 3y = e−|x|.

Solution:

(a) y′′+y′+3y = 0. Auxiliary equation: λ2 +λ+3 = 0 with roots λ = −1
2
± 1

2
i
√

11.

y = e−
1

2
x

(

A cos(
1

2

√
11x) + B sin(

1

2

√
11x)

)

.

(b) y′′(x) + y(x) = f(x). CF: yc = A sin x + B cos x. To find the PI write f(x) as a
Fourier series (obtained in the lectures)

f(x) =
4

π

∑

n>0, n odd

1

n
sin nx =

2

πi

∑

n odd

einx

n
.
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First find a PI for y′′ + y = einx. Trying y = Ceinx gives (−n2 +1)C = 1 so that
C = 1/(1 − n2) unless n = ±1.

n = 1: Try y = Cxeix so that y′′ = (−xeix + 2ieix)C. Therefore a particular
solution to y′′ + y = eix is y = −1

2
ixeix.

n = −1: Similarly particular solution to y′′ + y = e−ix is 1
2
ixe−ix

PI for full problem

yp =
2

πi

∑

n odd, n 6= ±1

einx

n(1 − n2)
+

2

πi
· −1

2
ixeix − 2

πi
· 1

2
ixe−ix

=
4

π

∑

n > 2 odd

sin nx

n(1 − n2)
− 2x

π
cos x.

(c) CF: general solution of part (a), PI: write f(x) = e−|x| as a Fourier integral

f(x) =

∫ ∞

−∞
dk eikx f̃(k) =

∫ ∞

−∞
dk eikx 1

π

1

1 + k2
.

PI for y′′ + y′ + 3y = eikx. Trying y = Ceikx gives C(−k2 + ik + 3)eikx = eikx so
that C = 1/(−k2 + ik + 3). Therefore a PI to the full problem is

yp(x) =
1

π

∫ ∞

−∞
dk eikx 1

1 + k2

1

(−k2 + ik + 3)
.

Problem Sheet 17

1. Solve x2y′′ + 4xy′ + y = 0. Solution:x2y′′ + 4xy′ + y = 0. The standard substitution
x = ez gives

d2y

d2z
+ (4 − 1)

dy

dz
+ y = 0. (6)

Auxiliary equation λ2 + 3λ + 1 = 0 with roots λ = −3
2
± 1

2

√
5

y = C1e
−( 3

2
− 1

2

√
5)z + C2e

−( 3

2
+ 1

2

√
5)z = C1x

−( 3

2
+ 1

2

√
5) + C2x

−( 3

2
− 1

2

√
5). (7)

2. Solve x2y′′ + 4xy′ + y = x5. Solution:So the same substitution gives

d2y

d2z
+ 3

dy

dz
+ y = e5z (8)

So, we already have the complementary function for this, we just need the particular
integral, substitute y = C exp (5z) giving

25C + 15C + C = 1 (9)

3

giving

y = C1x
−( 3

2
+ 1

2

√
5) + C2x

−( 3

2
− 1

2

√
5) +

1

41
x5. (10)

This isn’t such a good question, the one I meant to ask was something like

x2y′′ − 3xy′ − 5y = x5 (11)

After substitution this gives

d2y

d2z
− 4

dy

dz
− 5y = e5z (12)

So, the complementary equation is

λ2 + 5λ + 5 = 0 (13)

leading to λ = 5 or λ = −1. Now, to get the particular integral, we need to substitute
y = Cz exp (5z). Hence

10C − 4C = 1 (14)

so C = 1/6 and

y = C1x
5 +

C2

x
+

1

6
x5 log x (15)

Another question along the same lines would be

x2y′′ + 3xy′ + y = 0 (16)

Here substituting x = ez yields

d2y

d2z
+ (3 − 1)

dy

dz
+ y = 0.

Auxiliary equation λ2 + 2λ + 1 = 0 with two equal roots λ = −1 so that y(x) =
C1e

−z + C2ze
−z = C1x

−1 + C2x
−1 log x.

Problem Sheet 18

1. Use the recursion relation

an+2 =
2(n − α)an

(n + 1)(n + 2)

or the generating function

Φ(x, h) = e2xh−h2

=
∞
∑

n=0

hn

n!
Hn(x)

to obtain polynomial solutions of Hermite’s equation y′′ − 2xy′ + 2αy = 0 for α = 3,
4 and 5.
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2. Use the recursion relation

an+2 =
2(n − α)an

(n + 1)(n + 2)

or the generating function

Φ(x, h) = e2xh−h2

=

∞
∑

n=0

hn

n!
Hn(x)

to obtain polynomial solutions of Hermite’s equation y′′ − 2xy′ + 2αy = 0 for α = 3,
4 and 5.

Solution:Ok lets use the generating function, so, we want everything up to h5

Φ(x, h) = e2xh−h2

= 1 + (2xh − h2) +
1

2
(2xh − h2)2 +

1

6
(2xh − h2)3 +

1

24
(2xh − h2)4 +

1

120
25x5h5 + O(h6(17)

and, continuing to drop high powers in h

Φ(x, h = 1 + 2xh − h2 +
1

2
(4x2h2 − 4xh3 + h4) +

1

6
(8x3h3 − 12x2h4 + 6xh5) +

1

24
(16x4h4 − 32x

Hence

P3(x) = 8x3 − 12x
P4(x) = 16x4 − 48x2 + 12
P5(x) = 32x5 − 160x3 + 120x (19)

3. Legendre’s equation can be written

(1 − x2)y′′ − 2xy′ + αy = 0,

where α is a constant. Consider a series solution of the form

y(x) =
∞
∑

n=0

anxn.

Determine a recursion relation for the an coefficients. For what values of α does
Legendre’s equation have polynomial solutions?

Solution:y(x) =
∑∞

n=0 anxn, y′(x) =
∑∞

n=0 nanxn−1, y′′(x) =
∑∞

n=0 n(n − 1)anx
n−2

Therefore xy′(x) =
∑∞

n=0 nanxn and x2y′′(x) =
∑∞

n=0 n(n − 1)anxn.

Relabel y′′(x) (n = m + 2)

y′′(x) =
∞
∑

m=−2

am+2(m + 2)(m + 1)xm =
∞
∑

m=0

am+2(m + 2)(m + 1)xm.
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The last step used that the first two terms in the sum are zero. The ODE can be
written

(1−x2)y′′(x)−2xy′(x)+αy(x) =
∞
∑

m=0

xm [am+2(m + 2)(m + 1) − amm(m − 1) − 2mam + αam] = 0,

giving the recursion relation

am+2 =
m(m + 1) − α

(m + 2)(m + 1)
am.

If α is of the form n(n + 1) (n = 0, 1, 2, ...) one of the solutions of the ODE will be a
polynomial since the recursion relation will terminate.

4. (Frobenius training exercise) For each of the following equations obtain the indicial
equation for a Frobenius series of the form

y(x) =

∞
∑

n=0

anxn+s

(a) y′′ + y = 0.

(b) x2y′′ + 3xy′ + y = 0

(c) 4xy′′ + 2y′ + y = 0.

In case a) use the method of Frobenius to obtain the general solution. In case b)
use the method of Frobenius to find one solution (the method fails to give the other
solution).

Solution:(a) Frobenius: y =
∑∞

n=0 anxn+s where s is to be determined. Differentiating
twice gives y′′(x) =

∑

(n+ s)(n+ s−1)xn+s−2 (most singular term in ODE). Relabel
this as y′′(x) = a0s(s−1)xs−2+a1(s+1)sxs−1+

∑∞
m=0 am+2(m+s+2)(m+s+1)xm+s

and so

y′′(x) + y(x) = a0s(s − 1)xs−2 + a1(s + 1)sxs−1

+
∞
∑

m=0

xm+s [am+2(m + s + 2)(m + s + 1) + am] = 0.

Take a0 = 1. The indicial equation is

s(s − 1) = 0,

with roots s = 0 and s = 1.

s = 0 For this s can take a1 6= 0 but for now set a1 = 0.
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Recursion relation: an+2(n + 2)(n + 1) + an = 0 or

an+2 = − an

(n + 2)(n + 1)
,

which is particularly easy to solve a0 = 1, a2 = − 1
1·2 , a4 = 1

1·2·3·4 , ..., a2p = (−1)p

(2p)!
. The

solution is

y(x) =

∞
∑

p=0

(−1)px2p

(2p)!
= cos x.

Including a1 6= 0 gives y(x) = cos x+a1 sin x. The s = 1 solution is also y(x) = sin x.
The general solution is

y(x) = A cos x + B sin x.

(b) x2y′′ + 3xy′ + y = 0. Frobenius y =
∑

n=0 anxn+s, xy′ =
∑

n=0 an(n + s)xn+s,
x2y′′ =

∑

n=0 an(n + s)(n + s − 1)xn+s. No ‘most singular’ term or terms! No
recursion relation! Indicial equation? (need a0 contributions) x2y′′ + 3xy′ + y =
a0x

s [s(s − 1) + 3s + 1] + higher powers = 0 so that s2 + 2s + 1 = 0 with two equal
roots s = −1. Since there is no recursion relation the an (n > 0) are all zero.
y(x) = x−1 is one solution (the other solution is not a Frobenius series).

(c) Write y =
∑∞

n=0 an xn+s

y′ =
∑∞

n=0 an (n + s) xn+s, y′′ =
∑∞

n=0 an (n + s)(n + s − 1) xn+s. Now:

y′(x) = a0sx
s−1 +

∑∞
n=0 an+1(n + 1 + s)xn+s

xy′′(x) = a0s(s − 1)xs−1 +
∑∞

m=0 am+1(m + 1 + s)(m + s)xm+s.

4xy′′ + 2y′ + y = a0 [4s(s − 1) + 2s]

+
∞
∑

m=0

[4(m + 1 + s)(m + s)am+1 + 2(m + 1 + s)am+1 + am] xm+s

4a0s(s −
1

2
)xs−1 +

∞
∑

m=0

[

4(m + 1 + s)(m + s +
1

2
)am+1 + am

]

.

Set a0 = 1 Indicial equation: s(s − 1
2
) = 0 with roots s = 0 and s = 1

2
.

5. Use the recursion relation to show that the functions Hn defined through the gener-
ating function

Φ(x, h) = e2xh−h2

=
∞
∑

n=0

hn

n!
Hn(x)

satisfy Hermites equation
y′′ − 2xy′ − 2ny = 0.

Solution:Done separately.
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