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13 April 2007

Problem Sheet 13

1. Express the following functions as Fourier integrals:

(a)

f(x) =

{

cos x |x| < π
2

0 |x| > π
2

(b)

f(x) =
sin x

x

Solution:(a) Writing f as a Fourier integral f(x) =
∫∞

−∞
dk eikx f̃(k). We require

the Fourier transform:

f̃(k) =
1

2π

∫ ∞

−∞

dk e−ikx f(x) =
1

2π

∫ π

2

−π

2

dk e−ikx eix + e−ix

2

=
1

4π

(

ei(1−k)x

i(1 − k)
+

ei(−1−k)x

i(−1 − k)

)
∣

∣

∣

∣

π

2

−π

2

=
1

4π

[

ie−ikπ/2 + ieikπ/2

i(1 − k)
+

−ie−ikπ/2 − ieikπ/2

i(−1 − k)

]

=
1

4π
2 cos

(

kπ

2

) (

1

1 − k
+

1

1 + k

)

=
1

π
cos

(

kπ

2

)

1

1 − k2
.

Therefore

f(x) =
1

π

∫ ∞

−∞

dk cos

(

kπ

2

)

eikx

1 − k2
.

Remark: f̃(k) is well behaved at k = ±1. (b)

sin x

x
=

1

2

∫ 1

−1

dk eikx.

Remark: In the lectures it was shown that the Fourier transform of a square pulse is

proportional to sin k/k and so it follows that the Fourier transform of the sin x/x is
proportional to the pulse and, for example, integrating quickly gives the constant of
proportionality.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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2. Prove the following properties of the Fourier transform

(a) The Fourier transform of an even function is even.

(b) The Fourier transform of a real odd function is purely

(c) f̃ ′(k) = ikf̃(k).

(d) Acting with the Fourier transform four times reproduces the original function
apart from an overall constant.

Solution:(a) Assume that f is even, i.e. f(−x) = f(x), then

f̃(−k) =
1

2π

∫ ∞

−∞

dx eikxf(x).

make the change of variables y = −x:

f̃(−k) =
1

2π

∫ ∞

−∞

dy e−ikyf(−y) =
1

2π

∫ ∞

−∞

dy e−ikyf(y) = f̃(k).

(b) Assume that f is real and odd, i.e. f(−x) = −f(x) and f̄(x) = f(x)

f̃(k) =
1

2π

∫ ∞

−∞

dx eikx f(x).

Make the change of variables y = −x

f̃(k) =
1

2π

∫ −∞

∞

(−dy) e−ikyf(−y) = − 1

2π

∫ ∞

−∞

(dy) e−ikyf(y) = −f̃(k).

(c) here an integration by parts is required

f̃ ′(k) =
1

2π

∫ ∞

−∞

dx e−ikxf ′(x) = e−ikxf(x)
∣

∣

∞

−∞
−
∫ ∞

−∞

dx(−ik)e−ikxf(x) = ikf̃(k),

assuming that the boundary terms vanish.
(d) The Fourier integral representation of a function f , i.e.

f(x) =

∫ ∞

−∞

dk eikx f̃(k),

can be written as
f(−x) = 2π ˜̃f(x),

or
˜̃
f(x) = f(−x)/(2π). Acting with the Fourier transform twice reproduces the

original function up to the x → −x reflection multiplied by 1/(2π). Acting with the
Fourier transform four times reproduces the original function multiplied by (2π)−2.
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3. Compute

(a)
∫ ∞

−∞

dx x2 δ(x − 3)

(b)
∫ ∞

−∞

dx δ(x2 + x)

(c)
∫ 2

0

dx ex δ′(x − 1)

(d)
∫ ∞

0

dx e−axδ(cos x)

(e)
∫ ∞

0

dx δ(eax cos x).

(f)
d

dx
eaθ(x).

where a is a constant.

Solution:(a)
∫∞

−∞
dx x2δ(x − 3) = 32 = 9.

(b)Use

δ (h(x)) =
∑

i

δ(x − xi)

|h′(xi)|
,

where the xi are roots of h. Here h(x) = x2 + x = x(x + 1) with roots x1 = 0 and
x2 = −1. h′(x) = 2x + 1 and so h′(0) = 1, h′(−1) = −1. This gives δ(x2 + x) =
δ(x) + δ(x + 1)

∫ ∞

−∞

dx δ(x2 + x) = 2.

(c) Integrate by parts:

∫ 2

0

dx ex δ′(x − 1) = exδ(x − 1)|20 −
∫ 2

0

dx ex δ(x − 1) = −e.

(d) h(x) = cos x has zeros at x = 1
2
π, 3

2
π, 5

2
π etc. and the derivative of cosx is equal

to 1 or −1 at these points. Therefore

∫ ∞

0

dx e−axδ(cos x) =
∞
∑

n=0

e−a( 1

2
π+nπ) = e−

1

2
aπ

∞
∑

n=0

e−anπ =
e−

1

2
aπ

(1 − e−aπ)
,

3

the last step used the standard geometric series formula. The result may be rewritten
in terms of the hyperbolic sine.

∫ ∞

0

dx e−axδ(cos x) =
1

2 sinh 1
2
aπ

.

(e) h(x) = eax cos x, h′(x) = aeax cos x − eax sin x. The zeros of h are the same as in

the previous problem. At a zero |h′(x)| = eax. This implies that the integral leads to
the same geometric sum as in part (d). (f) First you need to reexpress everything so

that it is linear in θ(x), we can’t differenciate powers of θ(x). So

exp aθ =
∞
∑

n=0

θ(x)nann!

= 1 +
∞
∑

n=1

θ(x)nann!

then, using θn = θ, easy to check from the definition of θ, we get

exp aθ = 1 + θ
∞
∑

n=1

an

n!

= 1 + θ

(

∞
∑

n=0

θ(x)nan

n!
− 1

)

= 1 + θ (ea − 1)

and hence
d

dx
eaθ(x) =

d

dx
[1 + θ (ea − 1)] = δ(x) (ea − 1)
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Problem Sheet 14

1. In the lectures (quite a while ago) it was shown that the scalar field

φ(r) =
1

r
,

where r =
√

x2 + y2 + z2 is harmonic except at the origin. In fact it can be shown
that

∇2φ(r) = −4πδ3(r). (A)

Formally apply Gauss’ theorem to the vector field F = ∇φ to show that

∫

r<a

dV ∇2 φ = −4π.

This is clearly consistent with (A). Another treatment would replace the singular
scalar field φ with a sequence of smooth scalar fields, e.g.

φn(r) =
n√

n2r2 + 1
.

Prove that
∫

R3

dV ∇2φn(r) = −4π.

Solution:F = ∇φ so that ∇2φ = div F. Applying Gauss’ theorem

∫

r<a

dV ∇2φ =

∫

r<a

dV div F =

∫

r=a

F · dA.

F = −r/r3 and F · n = −1/a2 and the surface are is 4πa2 giving

∫

r<a

dV ∇2φ = −4π.

∂xφn = −1
2
n(n2r2 + 1)−3/22xn2, and similarly for ∂yφn and ∂zφn. Therefore

∇φn = − n3r

(n2r2 + 1)3/2
.

∫

r<a

dV ∇2φn =

∫

r=a

∇φn · dA = − n3 4πa3

(n2a2 + 1)3/2
→ −4π

as a → ∞.
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Problem Sheet 15

1. Inside an integral, what is
d

dx

1

1 + ǫθ(x)
(1)

for θ(x) the usual Heaviside function and |ǫ| < 1.

Solution:There are two ways to do this, we can either expand the fraction as a power
series or we can try and evaluate it inside an integral. First the first way, using the
usual expansion of 1/(1 + x) for x < 1

1

1 + ǫθ(x)
=

∞
∑

n=0

[−ǫθ(x)]n (2)

Now, we just use the fact that θ(x)n = θ(x) for n a positive integer; note that we
have to be careful with the first term in the series which doesn’t contain a θ(x) factor
since n is zero. Hence

1

1 + ǫθ(x)
= 1+θ(x)

∞
∑

n=1

(−ǫ)n = 1+θ(x)
∞
∑

n=0

(−ǫ)n−θ(x) = 1−θ(x)+
1

1 + ǫ
θ(x) (3)

where we have added and taken away the missing term in the sum. Hence,

d

dx

1

1 + ǫθ(x)
=

d

dx
[1 − θ(x) +

1

1 + ǫ
θ(x)] =

1

1 + ǫ
δ(x) − δ(x) (4)

The other way is to do the calculation inside an integral: with a < 0 and b > 0

I =

∫ b

a

dxf(x)
d

dx

1

1 + ǫθ(x)
(5)

Now, integrating by parts

I = f ′(x)
1

1 + ǫθ(x)

]b

a

−
∫ b

a

dxf ′(x)
1

1 + ǫθ(x)
(6)

Next, we split the integral into two and use the fact θ(x) is zero for negative x and
one for positive x. So,

I =
1

1 + ǫ
f(b) − f(a) −

∫ 0

a

dxf ′(x) − 1

1 + ǫ

∫ b

0

dxf ′(x) (7)

and, using the Fundamental Theorem of Calculus

I =
1

1 + ǫ
f(b)−f(a)−f(0)+f(a)− 1

1 + ǫ
f(b)+

1

1 + ǫ
f(0) =

(

1

1 + ǫ
− 1

)

f(0) (8)

which implies
d

dx

1

1 + ǫθ(x)
=

1

1 + ǫ
δ(x) − δ(x) (9)

as before.
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2. Compute

(a)
∫∞

−∞
dx ex δ(x + 1)

(b)
∫ 1

−3
dx δ(x2 − 3x + 2)

(c)
∫∞

−∞
dx cos x δ′(x)

(d)
∫ 1

0
dx δ

(

sin 1
x

)

.

Solution:

(a)
∫∞

−∞
dx ex δ(x + 1) = e−1.

(b) Use

δ (h(x)) =
∑

i

δ(x − xi)

|h′(xi)|
,

where the xis are roots of h. In this case h(x) = x2 − 3x + 2 = (x − 2)(x − 1)
with roots x1 = 2 and x2 = 1. This is a problem since x = 1 is one of the limits
of integration, in fact

∫ 0

−∞

dxδ(x) (10)

isn’t defined, and so the answer here is that the integral isn’t defined. Say
instead we had been asked

∫ 3

−3

dx δ(x2 − 3x + 2) (11)

then both roots are in the integral and we would use h′(x) = 2x − 3 so that
h′(1) = −1, giving |h(1)| = 1 and h′(2) = 1 which gives

δ(x2 − 3x + 2) = δ(x + 1) + δ(x2)

and
∫ 3

−3

dx δ(x2 − 3x + 2) = 2.

(c)
∫ ∞

−∞

dx cos xδ′(x) = −
∫ ∞

−∞

dx (− sin x) δ(x) = 0

Integrating by parts and using sin 0 = 0.

(d) Use formula for δ(h(x)), here h(x) = sin(1/x) which is zero for 1/x = nπ
(n ∈ Z). h′(x) = −x−2 cos(1/x) and since | cos nπ| = 1

δ (h(x)) =
∑

n 6=0

δ
(

x − 1
nπ

)

π2n2
.
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Now 1/(nπ) ∈ (0, 1) for all positive n which gives
∫ 1

0

dx δ

(

sin
1

x

)

=
1

π2

∑

n>0

1

n2
.

The sum on the RHS is ζ(2) = π2/6 (see Q3 Sheet 11) and so
∫ 1

0

dx δ

(

sin
1

x

)

=
1

6
.

3. Obtain a general solution to

(a) y′ − 3y = e−x

(b) y′ + y cotx = cos x

(c) (x + 1)y′ + y = (x + 1)2

Solution:

(a) Rewrite as
e−3xy′ − 3ye−3x = e−4x

or
(

e−3xy
)′

= e−4x

and then integrate.

(b) the quuickest thing to do is multiply across by the sine

sin xy′ + cosxy = sin x cos x (12)

and rewritting
(sin xy)′ = (sin2 x)′ (13)

hence
sin xy = sin2 x + C (14)

or
y = sin x + Ccosec x (15)

(c) (x + 1)y′ + y = (x + 1)2 can again be rewritten

[(x + 1)y]′ = x2 + 2x + 1 (16)

so

(x + 1)y =
1

3
x3 + x2 + x + C (17)

or

3y =
x3 + 3x2 + 3x + 1

x + 1
+

C

x + 1
= (x + 1)2 +

C

x + 1
(18)

with a redefinition of C to get the nice devision at the end, another way to do
this would have been to change variables to z = x + 1 at the start.
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4. Obtain the general solutions of the following ODEs:

(a) y′′ + 5y′ + 6y = 0

(b) y′′ − 2y′ + y = 0

Solution:

(a) y′′ + 5y′ + 6y = 0 so substitute eλx to get the auxiliary equation

λ2 + 5λ + 6 = 0 (19)

so λ = −2 and λ = −3 giving solution

y = C1e
−2x + C2e

−3x (20)

(b) y′′ − 2y′ + y = 0 gives auxiliary equation

λ2 − 2λ + 1 = 0 (21)

which has λ = 1 as a repeated root, so

y = C1e
x + C2xex (22)

9


