231 Tutorial Sheet 6: due Friday November 24¹²

17 November 2006

Useful facts:

• To evaluate the line integral for a parameterized curve:

$$\int_{c} \mathbf{F} \cdot \mathbf{dl} = \int_{t_1}^{t_2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt \tag{1}$$

where t_1 and t_2 are the parameter values corresponding to the beginnig and end of the curve.

- A vector field **F** is **conservative** if **F** =grad ϕ for some scalar field ϕ . ϕ is often called a **potential** for **F**.
- A vector field is path-independent if its line integral between any two points is independent of the path.
- An irrotational field on a simply connected domain is conservative.

Questions

- 1. For each of the following vector fields compute the line integral $\oint_C \mathbf{F} \cdot \mathbf{dl}$ where C is the unit circle in the *xy*-plane taken anti-clockwise.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F} = y\mathbf{i} x^2y\mathbf{j}$.
- 2. For each of these fields determine if **F** is conservative, if it is, by integration or otherwise, find a potential: ϕ such that $\mathbf{F} = \nabla \phi$.

(a)
$$\mathbf{F} = x\mathbf{i} + y\mathbf{j}$$

(b) $\mathbf{F} = x^2y\mathbf{i} + 5xy^2\mathbf{j}$
(c) $\mathbf{F} = e^x \cos y\mathbf{i} - e^x \sin y\mathbf{j}$
(d) $\mathbf{F} = x \log y\mathbf{i} + y \log x\mathbf{j}$

3. If C is a straight line from (x', y, z) to (x, y, z) show

$$\int_C \mathbf{F} \cdot \mathbf{dl} = \int_{x'}^x F_1 dx \tag{2}$$

4. Consider the 'point vortex' vector field

$$\mathbf{F} = \frac{y}{x^2 + y^2} \mathbf{i} - \frac{x}{x^2 + y^2} \mathbf{j}.$$

Show that curl $\mathbf{F} = 0$ away from the z-axis. Establish that \mathbf{F} is *not* conservative in the (non simply-connected) domain $x^2 + y^2 \ge \frac{1}{2}$. Is \mathbf{F} conservative in the domain defined by $x^2 + y^2 \ge \frac{1}{2}$, $y \ge 0$? If so obtain a scalar potential for \mathbf{F} .

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.