231 Tutorial Sheet 4^{12}

3 November 2006

Useful facts:

• For a scalar field ϕ the gradiant is

grad
$$\phi = \frac{\partial \phi}{\partial x}\mathbf{i} + \frac{\partial \phi}{\partial y}\mathbf{j} + \frac{\partial \phi}{\partial z}\mathbf{k}$$
 (1)

• For a vector field $\mathbf{F} = (F_1, F_2, F_3)$ the divergence is

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
 (2)

Questions

1. Show that away from the origin the vector field

$$\mathbf{F} = \frac{\hat{\mathbf{r}}}{r^2} = \frac{\mathbf{r}}{r^3}$$

is divergenceless.

- 2. Show div $\mathbf{r} = 3$ and grad $|\mathbf{r}| = \mathbf{r}/|\mathbf{r}|$.
- 3. Find $\nabla(1/|\mathbf{r}|)$.
- 4. Show grad $f(r) = f'(r)\hat{\mathbf{r}}$ where $r = |\mathbf{r}|$. If $\mathbf{F}(r) = f(r)\mathbf{r}$ find div $\mathbf{F}(r)$. Find div grad f(r).

Useful fact:

• The gradient of the divergence of a scalar field is called the Laplacian:

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(3)

and is an important operator.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.