231 Tutorial Sheet 21, due Friday 11 May¹

4 May 2007

Useful facts:

• Separation of variables: for example, let $\phi(x, y) = X(x)Y(y)$ and substitute into the equation.

Questions

1. The function $\phi(x, y)$ is harmonic in the square $0 \le x \le \pi$, $0 \le y \le \pi$. On three sides ϕ is zero and on the lower side

$$\phi(x,0) = \cos x. \tag{1}$$

Determine $\phi(x, y)$ within the square. Sketch the lines of constant ϕ .

- 2. Repeat the problem with the boundary condition $\phi(x, 0) = \sin x$ (again ϕ is zero on the other three sides).
- 3. Repeat the problem with the Neumann boundary condition

$$\frac{\partial \phi}{\partial x} = 0 \tag{2}$$

$$\frac{\partial \phi}{\partial y} = 0 \tag{3}$$

at
$$y = \pi$$
 and

at x = 0 and $x = \pi$,

 $\frac{\partial \phi}{\partial y} = -1 \tag{4}$

on y = 0

4. $\phi(x, y)$ is harmonic in the strip $0 \le y \le 1$ and periodic in the x direction. On the upper and lower edges Dirichlet boundary conditions are imposed

$$\phi(x, y = 1) = 1 + \sin x, \quad \phi(x, y = 0) = \cos 2x.$$

Determine $\phi(x, y)$ within the strip.

Suggestion: When applying the separation of variables method do not forget the case $W''(\cdot) = W''(\cdot)$

$$\frac{X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} = 0.$$
(5)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231