231 Tutorial Sheet 15: due Friday 2 March. 12

17 Febuary 2006

Useful facts:

• The Dirac delta function:

$$\int_{-\infty}^{\infty} dx \, f(x)\delta(x) = f(0)$$

• If h(x) is a continuous function

$$\int_{-\infty}^{\infty} dx f(x)\delta[h(x)] = \sum_{x_i: f(x_i)=0} \frac{f(x_i)}{|h'(x_i)|}$$

- To solve the equation y'+py=f multiply across by an integrating factor $\exp\left(\int^t d\tau p(\tau)\right)$ and express the right hand side as the derivative of a product.
- To solve the equation ay'' + by' + cy = 0, with a, b and c constants, use an exponential substitution $y = \exp(\lambda x)$ and solve for λ . If this only gives one solution, then $y = x \exp(\lambda x)$ is also a solution.

Questions

1. Inside an integral, what is

$$\frac{d}{dx}\frac{1}{1+\epsilon\theta(x)}\tag{1}$$

for $\theta(x)$ the usual Heaviside function and $|\epsilon| < 1$.

- 2. Compute
 - (a) $\int_{-\infty}^{\infty} dx \ e^x \ \delta(x+1)$
 - (b) $\int_{-3}^{1} dx \ \delta(x^2 3x + 2)$
 - (c) $\int_{-\infty}^{\infty} dx \cos x \, \delta'(x)$
 - (d) $\int_0^1 dx \, \delta\left(\sin\frac{1}{x}\right)$.
- 3. Obtain a general solution to
 - (a) $y' 3y = e^{-x}$
 - (b) $y' + y \cot x = \cos x$
 - (c) $(x+1)y' + y = (x+1)^2$
- 4. Obtain the general solutions of the following ODEs:
 - (a) y'' + 5y' + 6y = 0
 - (b) y'' 2y' + y = 0

 $^{^{1}}Conor\ Houghton, \ houghton @maths.tcd.ie, see\ also\ http://www.maths.tcd.ie/~houghton/231$

²Including material from Chris Ford, to whom many thanks.