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Useful facts:

e A function f(x) has period L if f(x+1) = f(z), it is odd if f(—z) = —f(x) and even
it f(—) = f(2).

e A function with period [ has the Fourier series expansion
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e A function with period [ has the Fourier series expansion
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e Parceval’s formula:
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1Conor Houghton, houghton@maths.tcd. ie, see also http://www.maths.tcd.ie/ houghton/231
2Including material from Chris Ford, to whom many thanks.

Questions

1. Express the following periodic functions (I = 27) as complex Fourier series
(a)
0 —m1<z<—a
fla)=¢ 1 —a<z<a
0 a<z<m

where a € (0,7) is a constant.

(b)
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2. Show that the periodic function f defined by f(z) = |z| — i7 for -7 <z < 7 a
f(z +2m) = f(z) has the Fourier series expansion
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3. Use the Fourier series given in question 2 to compute the following sums
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Remark: With calculations of this kind it makes sense to try a quick numerical che
of your answer.




