231 Outline Solutions Tutorial Sheet 7, 8 and 9.¹²

22 January 2006

Problem Sheet 7

- 1. Which of the following vector fields are conservative?
 - (a) $\mathbf{F} = -yz\sin x \mathbf{i} + z\cos x \mathbf{j} + y\cos x \mathbf{k}.$
 - (b) $\mathbf{F} = \frac{1}{2}y \, \mathbf{i} \frac{1}{2}x \, \mathbf{j}.$
 - (c) $\mathbf{F} = \frac{1}{2} (\mathbf{B} \times \mathbf{r})$ where **B** is a constant vector.

Solution:

- (a) $\mathbf{F} = \nabla yz \cos x$ so \mathbf{F} is conservative.
- (b) curl $\mathbf{F} = \mathbf{k} \neq 0$ so \mathbf{F} is not conservative.
- (c) A short calculation gives curl $\mathbf{F} = \mathbf{B}$ so \mathbf{F} is not conservative. Remark: $\frac{1}{2}(\mathbf{B} \times \mathbf{r})$ is a vector potential for the constant vector field \mathbf{B} .
- 2. Using Gauss' theorem or otherwise compute the flux of the vector field $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ through the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$ with the orientation taken upwards. What is the flux out of the whole sphere?

Solution:Let S be the closed surface comprising the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$ and the disk (needed to close the surface) z = 0, $x^2 + y^2 \le 1$. Using Gauss' theorem the flux of **F** out of S is

$$\int_{S} \mathbf{F} \cdot d\mathbf{A} = \int_{D} \operatorname{div} \mathbf{F} \, dV = 3 \int_{D} (x^{2} + y^{2} + z^{2}) \, dV,$$

where D is the region enclosed by S. This integral can be worked out through spherical polar coordinates or just by splitting D into small spherical half-shells of volume $2\pi r^2 \delta r$:

$$\int_S \mathbf{F} \cdot d\mathbf{A} = 2\pi \int_0^1 dr \ r^2 \ 3r^2 = \frac{6\pi}{5}$$

Now the flux out of the disk is zero since here **F** is perpendicular to the outward normal $\mathbf{n} = -\mathbf{k}$. Thus the flux through the hemisphere is $6\pi/5$. The flux out of the whole sphere is $12\pi/5$.

3. Consider, again, the vector field

$$\mathbf{F} = \frac{\mathbf{r}}{r^3}, \qquad \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

²Including material from Chris Ford, to whom many thanks.

- (a) Compute the flux of \mathbf{F} out of a sphere of radius *a* centred at the origin.
- (b) Compute the flux of **F** out of the box $1 \le x \le 2$, $0 \le y \le 1$, $0 \le z \le 1$.
- (c) Compute the flux of **F** out of the box $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$.

Solution:

- (a) Flux integral trivial since $\mathbf{F} \cdot \mathbf{n}$ is constant over the sphere (**n** is the outward normal). Here $\mathbf{F} \cdot \mathbf{n} = 1/a^2$. Therefore $\int_C \mathbf{F} \cdot d\mathbf{A} = 4\pi a^2 \frac{1}{a^2} = 4\pi$. Note that this is independent of the radius of the sphere.
- (b) We know $\operatorname{div} \mathbf{F} = 0$. Therefore Gauss' theorem implies that the flux out of the box is zero. Note that this result is very difficult to obtain via a direct surface integral computation.
- (c) Naively, Gauss' theorem also gives a zero flux in this case. However, this is not correct. Indeed, an indiscriminate use of Gauss' theorem would also give a zero flux in part i). The point is that in parts i) and iii) (but not ii)) the 'inside' region contains the origin where **F** is singular. As in part i) the correct answer to this question is 4π . This can be obtained by combining Gauss' theorem with the result of the direct calculation of part a). To do this remove a sphere (centred at the origin) of radius less than one from the box. In this region **F** is smooth and so Gauss' theorem implies that the flux out of this region is zero. However this flux comprises two parts; the flux out of the box (which we wish to compute) and the flux into the cut sphere (which from part i) is -4π). Therefore the flux out of the box must be 4π .

Problem Sheet 8

1. Obtain a vector potential for the solenoidal vector field: $\mathbf{F} = x\mathbf{i} + y\mathbf{j} - 2z\mathbf{k}$ Solution: Use the formula $\mathbf{A}(\mathbf{r}) = \int_0^1 dt \mathbf{F}(t\mathbf{r}) \times \mathbf{r}t$. Now $\mathbf{F} = x\mathbf{i} + y\mathbf{j} - 2z\mathbf{k} = \mathbf{r} - 3z\mathbf{k}$ so that

$$\mathbf{A}(\mathbf{r}) = \int_0^1 dt - 3zt\mathbf{k} \times \mathbf{r}t = -3\int_0^1 dt t^2 (zx\mathbf{j} - zy\mathbf{i}) = zy\mathbf{i} - zx\mathbf{j}.$$

2. Obtain a vector potential for the solenoidal vector field: $\mathbf{F} = e^{x}\mathbf{k}$.

Solution: $\mathbf{A} = e^x \mathbf{j}$ by inspection. Using the formula actually gives a different vector potential, this is possible because the vector potential is only defined up to an irrotational field,

$$\mathbf{A}(\mathbf{r}) = \left(e^x + \frac{(1-e^x)}{x}\right)\mathbf{j} - y\left(\frac{e^x}{x} - \frac{(e^x-1)}{x^2}\right)\mathbf{i}.$$

The two vector potentials differ by a gradient

$$\mathbf{A}_{II} - \mathbf{A}_{I} = \frac{1 - e^{x}}{x}\mathbf{j} - y\left(\frac{e^{x}}{x} - \frac{(e^{x} - 1)}{x^{2}}\right)\mathbf{i} = \nabla\phi$$

where

$$\phi = y \frac{1 - e^x}{x}$$

3. Find a Hodge decomposition for the vector field $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$.

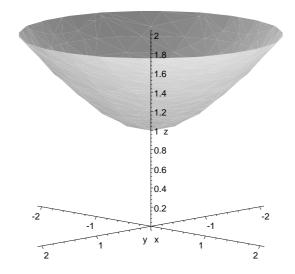
Solution: So the Hodge decomposition is $\mathbf{F} = \nabla \phi + \operatorname{curl} \mathbf{A}$ which implies $\Delta \phi = 1$. A convenient choice here is

$$\phi = \frac{1}{2}z^2$$

leaving curl $\mathbf{A} = -y\mathbf{i} + x\mathbf{j}$ but we have looked at examples like this before, $-y\mathbf{i} + x\mathbf{j} = \mathbf{k} \times \mathbf{r}$ so $\mathbf{A} = 2\mathbf{k}$.

Problem Sheet 9

1. Using Gauss' theorem or otherwise compute the flux of the vector field $\mathbf{F} = x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$ upwards through the part of the hyperboloid, $z^2 - x^2 - y^2 = 1$, lying between the z = 1 and z = 2 planes. Note that the surface to be integrated over is not a closed surface. Thus to apply Gauss' theorem consider the closed surface comprising the given surface and a suitable disc in the z = 2 plane. Using Gauss' theorem the flux out of the combined closed surface can be calculated. Then the disc contribution should be subtracted.



Solution: Consider the closed surface comprising the given surface and the disk defined by z = 2 and $x^2 + y^2 \leq 3$. The flux out of this combined surface is 3V, where V is the volume enclosed, since div $\mathbf{F} = 3$.

V can be computed through cylindrical polar coordinates (ρ, θ, z)

$$\int_{1}^{2} dz \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{z^{2}-1}} d\rho \ \rho = \pi \int_{1}^{2} dz \ (z^{2}-1) = \pi \left| \left(\frac{1}{3}z^{3}-z\right) \right|_{1}^{2} = \frac{4}{3}\pi$$

Thus the flux is $3V = 4\pi$.

Now the disk contribution must be subtracted. On the disk $\mathbf{n} = \mathbf{k}$ and $\mathbf{F} \cdot \mathbf{n} = z = 2$, a constant. The flux (upwards) through the disk is $2 \cdot 3\pi = 6\pi$ since the area of the disk is 3π .

2. Obtain vector potentials for the solenoidal vector fields:

- (a) $\mathbf{F} = \mathbf{i} + 2z\mathbf{j} + \mathbf{k}$
- (b) $\mathbf{F} = e^z \mathbf{i} + e^x \mathbf{k}.$

Solution: Use the formula $\mathbf{A}(\mathbf{r}) = \int_0^1 dt \ \mathbf{F}(t\mathbf{r}) \times \mathbf{r}t.$

(a) $\mathbf{F}(rt) = (1, 2zt, 1)$ and so the integral is

$$\mathbf{A} = \int_0^1 dt \, (t^2 z^2 - yt, tx - tz, yt - xzt^2)$$

giving

$$\mathbf{A} = \left(\frac{z^2}{t} - \frac{y}{2}, \frac{x}{2} - \frac{z}{2}, \frac{y}{2} - \frac{xz}{3}\right)$$

(b) So, here,

$$\mathbf{F}(t\mathbf{r}) \times \mathbf{r}t = \left(-yte^{tx}, xte^{tx} - tze^{tz}, yte^{tz}\right)$$

and using the integration by parts formula

$$\int_0^1 t e^{at} dt = \frac{(a-1)e^a + 1}{a^2}$$

gives

$$\mathbf{A} = \left(y\frac{(x-1)e^x+1}{x^2}, \frac{(x-1)e^x+1}{x} - \frac{(z-1)e^z+1}{z^2}, y\frac{(z-1)e^z+1}{z^2}\right)$$

- 3. Compute the lengths of the following curves
 - (a) A helix with parametrization $x(u) = 2\cos u$, $y(u) = 2\sin u$, z(u) = u and $0 \le u \le 2\pi$.
 - (b) A lemniscate $r^2 = \cos 2\theta$ with $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ (r and θ are polar coordinates).

In part b) write the result as an integral (don't bother trying to compute it). *Solution:*

(a) With the given parametrization

$$\frac{d\mathbf{r}}{du} = -2\sin u \,\,\mathbf{i} + 2\cos u \,\,\mathbf{j} + \mathbf{k},$$

and so

$$\left|\frac{d\mathbf{r}}{du}\right| = \sqrt{5}.$$

Therefore the arc length is $2\pi\sqrt{5}$.

(b) Here the parametrization is not given. Use the polar angle as a parameter, i.e. $u = \theta$. This gives $x = r \cos \theta = \sqrt{\cos 2u} \cos u$ and $y = \sqrt{\cos 2u} \sin u$ or $\mathbf{r}(u) = \sqrt{\cos 2u} (\cos u \mathbf{i} + \sin u \mathbf{j})$.

$$\frac{d\mathbf{r}(u)}{du} = -\frac{\sin 2u}{\sqrt{\cos 2u}} \left(\cos u\mathbf{i} + \sin u\mathbf{j}\right) + \sqrt{\cos 2u} \left(-\sin u\mathbf{i} + \cos u\mathbf{j}\right).$$

$$\left|\frac{d\mathbf{r}(u)}{du}\right| = \frac{1}{\sqrt{\cos 2u}}\sqrt{\sin^2 2u + \cos^2 2u} = \frac{1}{\sqrt{\cos 2u}}.$$
$$L = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{du}{\sqrt{\cos 2u}}.$$

4. Determine the surface area of the 'bowl' which is the part of the paraboloid $z = x^2 + y^2$ below the z = 1 plane.

Solution: Using the standard formula with $h(\boldsymbol{x},\boldsymbol{y})=\boldsymbol{z}=\boldsymbol{x}^2+\boldsymbol{y}^2$

$$A = \int_{x^2 + y^2 \le 1} dx \, dy \, \sqrt{1 + \left(\frac{\partial h}{\partial x}\right)^2 + \left(\frac{\partial h}{\partial y}\right)^2} = \int_{x^2 + y^2 \le 1} dx \, dy \, \sqrt{1 + 4x^2 + 4y^2}.$$

Change to polar coordinates

$$A = \int_{0}^{2\pi} d\theta \int_{0}^{1} dr \ r \ \sqrt{1 + 4r^{2}} \qquad \text{(Jacobian } J = r)$$
$$= 2\pi \frac{2}{3} \cdot \frac{1}{8} \ (1 + 4r^{2})^{\frac{3}{2}} \Big|_{0}^{1}$$
$$= \frac{\pi}{6} (5^{\frac{3}{2}} - 1)$$

5. The centroid of a curve C, $(\bar{x}, \bar{y}, \bar{z})$ is given by

$$\bar{x} = \frac{1}{L} \int_C x dl \tag{1}$$

and so on, with L the length of the curve. Show that the centroid of a circular arc with radius r and angle 2θ (at the centre) is at a distance of $r \sin \theta/\theta$ from the centre. Solution: The arc can be parametrized $\mathbf{r}(u) = r \cos u \mathbf{i} + r \sin u \mathbf{j}$ where $-\theta < u < \theta$.

$$\frac{d\mathbf{r}(u)}{du} = -r\sin u\mathbf{i} + r\cos u\mathbf{j}$$

with

$$\left|\frac{d\mathbf{r}(u)}{du}\right| = r.$$

The centroid is

$$\bar{x} = \frac{1}{L} \int_{-\theta}^{\theta} du \left| \frac{d\mathbf{r}(u)}{du} \right| x(u) = \frac{1}{L} \int_{-\theta}^{\theta} du \ r \cdot r \cos u = \frac{2r^2 \sin \theta}{L} = \frac{r \sin \theta}{\theta},$$

since $L = 2r\theta$. $\bar{y} = 0$ by symmetry and so the centroid is at a distance of $r \sin \theta/\theta$ from the centre.