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22 January 2006

Problem Sheet 7

1. Which of the following vector fields are conservative?

(a) F = −yz sin x i + z cos x j + y cos x k.

(b) F = 1

2
y i − 1

2
x j.

(c) F = 1

2
(B × r) where B is a constant vector.

Solution:

(a) F = ∇yz cos x so F is conservative.

(b) curl F = k 6= 0 so F is not conservative.

(c) A short calculation gives curl F = B so F is not conservative. Remark: 1

2
(B×r)

is a vector potential for the constant vector field B.

2. Using Gauss’ theorem or otherwise compute the flux of the vector field F = x3i +
y3j + z3k through the hemisphere x2 + y2 + z2 = 1, z ≥ 0 with the orientation taken
upwards. What is the flux out of the whole sphere?

Solution:Let S be the closed surface comprising the hemisphere x2 + y2 + z2 = 1,
z ≥ 0 and the disk (needed to close the surface) z = 0, x2 + y2 ≤ 1. Using Gauss’
theorem the flux of F out of S is

∫

S

F · dA =

∫

D

div F dV = 3

∫

D

(x2 + y2 + z2) dV,

where D is the region enclosed by S. This integral can be worked out through
spherical polar coordinates or just by splitting D into small spherical half-shells of
volume 2πr2δr:

∫

S

F · dA = 2π

∫

1

0

dr r2 3r2 =
6π

5
.

Now the flux out of the disk is zero since here F is perpendicular to the outward
normal n = −k. Thus the flux through the hemisphere is 6π/5. The flux out of the
whole sphere is 12π/5.

3. Consider, again, the vector field

F =
r

r3
, r = xi + yj + zk.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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(a) Compute the flux of F out of a sphere of radius a centred at the origin.

(b) Compute the flux of F out of the box 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

(c) Compute the flux of F out of the box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Solution:

(a) Flux integral trivial since F · n is constant over the sphere (n is the outward
normal). Here F · n = 1/a2. Therefore

∫

C
F · dA = 4πa2 1

a2 = 4π. Note that
this is independent of the radius of the sphere.

(b) We know divF = 0. Therefore Gauss’ theorem implies that the flux out of the
box is zero. Note that this result is very difficult to obtain via a direct surface
integral computation.

(c) Naively, Gauss’ theorem also gives a zero flux in this case. However, this is not
correct. Indeed, an indiscriminate use of Gauss’ theorem would also give a zero
flux in part i). The point is that in parts i) and iii) (but not ii) ) the ‘inside’
region contains the origin where F is singular. As in part i) the correct answer to
this question is 4π. This can be obtained by combining Gauss’ theorem with the
result of the direct calculation of part a). To do this remove a sphere (centred at
the origin) of radius less than one from the box. In this region F is smooth and
so Gauss’ theorem implies that the flux out of this region is zero. However this
flux comprises two parts; the flux out of the box (which we wish to compute)
and the flux into the cut sphere (which from part i) is −4π). Therefore the flux
out of the box must be 4π.
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Problem Sheet 8

1. Obtain a vector potential for the solenoidal vector field: F = xi + yj − 2zk

Solution:Use the formula A(r) =
∫

1

0
dt F(tr)× rt. Now F = xi+ yj− 2zk = r− 3zk

so that

A(r) =

∫

1

0

dt − 3ztk × rt = −3

∫

1

0

dt t2 (zxj − zyi) = zyi − zxj.

2. Obtain a vector potential for the solenoidal vector field: F = exk.

Solution:A = exj by inspection. Using the formula actually gives a different vec-
tor potential, this is possible because the vector potential is only defined up to an
irrotational field,

A(r) =

(

ex +
(1 − ex)

x

)

j − y

(

ex

x
− (ex − 1)

x2

)

i.

The two vector potentials differ by a gradient

AII − AI =
1 − ex

x
j − y

(

ex

x
− (ex − 1)

x2

)

i = ∇φ.

where

φ = y
1 − ex

x
.

3. Find a Hodge decomposition for the vector field F = −yi + xj + zk.

Solution:So the Hodge decomposition is F = ∇φ + curl A which implies 4φ = 1. A
convenient choice here is

φ =
1

2
z2

leaving curlA = −yi+xj but we have looked at examples like this before, −yi+xj =
k × r so A = 2k.
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Problem Sheet 9

1. Using Gauss’ theorem or otherwise compute the flux of the vector field F = xi+yj+zk
upwards through the part of the hyperboloid, z2 − x2 − y2 = 1, lying between the
z = 1 and z = 2 planes. Note that the surface to be integrated over is not a closed
surface. Thus to apply Gauss’ theorem consider the closed surface comprising the
given surface and a suitable disc in the z = 2 plane. Using Gauss’ theorem the flux
out of the combined closed surface can be calculated. Then the disc contribution
should be subtracted.

x

2
1

-1
-2

y

2
1

-1
-2

z

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Solution:Consider the closed surface comprising the given surface and the disk defined
by z = 2 and x2 + y2 ≤ 3. The flux out of this combined surface is 3V , where V is
the volume enclosed, since div F = 3.

V can be computed through cylindrical polar coordinates (ρ, θ, z)

∫

2

1

dz

∫

2π

0

dθ

∫

√
z2−1

0

dρ ρ = π

∫

2

1

dz (z2 − 1) = π

∣

∣

∣

∣

(

1

3
z3 − z

)
∣

∣

∣

∣

2

1

=
4

3
π.

Thus the flux is 3V = 4π.

Now the disk contribution must be subtracted. On the disk n = k and F ·n = z = 2,
a constant. The flux (upwards) through the disk is 2 · 3π = 6π since the area of the
disk is 3π.

2. Obtain vector potentials for the solenoidal vector fields:

(a) F = i + 2zj + k

(b) F = ezi + exk.

Solution:Use the formula A(r) =
∫

1

0
dt F(tr) × rt.
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(a) F(rt) = (1, 2zt, 1) and so the integral is

A =

∫

1

0

dt (t2z2 − yt, tx − tz, yt − xzt2)

giving

A =

(

z2

t
− y

2
,
x

2
− z

2
,
y

2
− xz

3

)

(b) So, here,
F(tr) × rt =

(

−ytetx, xtetx − tzetz, ytetz
)

and using the integration by parts formula

∫

1

0

teatdt =
(a − 1)ea + 1

a2

gives

A =

(

y
(x − 1)ex + 1

x2
,
(x − 1)ex + 1

x
− (z − 1)ez + 1

z2
, y

(z − 1)ez + 1

z2

)

3. Compute the lengths of the following curves

(a) A helix with parametrization x(u) = 2 cos u, y(u) = 2 sin u, z(u) = u and
0 ≤ u ≤ 2π.

(b) A lemniscate r2 = cos 2θ with −π
4
≤ θ ≤ π

4
(r and θ are polar coordinates).

In part b) write the result as an integral (don’t bother trying to compute it).

Solution:

(a) With the given parametrization

dr

du
= −2 sin u i + 2 cos u j + k,

and so
∣

∣

∣

∣

dr

du

∣

∣

∣

∣

=
√

5.

Therefore the arc length is 2π
√

5.

(b) Here the parametrization is not given. Use the polar angle as a parameter,
i.e. u = θ. This gives x = r cos θ =

√
cos 2u cos u and y =

√
cos 2u sin u or

r(u) =
√

cos 2u(cos u i + sin u j).

dr(u)

du
= − sin 2u√

cos 2u
(cos ui + sin uj) +

√
cos 2u (− sin ui + cos uj) .
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∣

∣

∣

∣

dr(u)

du

∣

∣

∣

∣

=
1√

cos 2u

√

sin2 2u + cos2 2u =
1√

cos 2u
.

L =

∫ π

4

−π

4

du√
cos 2u

.

4. Determine the surface area of the ‘bowl’ which is the part of the paraboloid z = x2+y2

below the z = 1 plane.

Solution:Using the standard formula with h(x, y) = z = x2 + y2

A =

∫

x2+y2≤1

dx dy

√

1 +

(

∂h

∂x

)2

+

(

∂h

∂y

)2

=

∫

x2+y2≤1

dx dy
√

1 + 4x2 + 4y2.

Change to polar coordinates

A =

∫

2π

0

dθ

∫

1

0

dr r
√

1 + 4r2 (Jacobian J = r)

= 2π
2

3
· 1

8
(1 + 4r2)

3

2

∣

∣

∣

∣

1

0

=
π

6
(5

3

2 − 1)

5. The centroid of a curve C, (x̄, ȳ, z̄) is given by

x̄ =
1

L

∫

C

xdl (1)

and so on, with L the length of the curve. Show that the centroid of a circular arc
with radius r and angle 2θ (at the centre) is at a distance of r sin θ/θ from the centre.
Solution:The arc can be parametrized r(u) = r cos ui + r sin uj where −θ < u < θ.

dr(u)

du
= −r sin ui + r cos uj

with
∣

∣

∣

∣

dr(u)

du

∣

∣

∣

∣

= r.

The centroid is

x̄ =
1

L

∫ θ

−θ

du

∣

∣

∣

∣

dr(u)

du

∣

∣

∣

∣

x(u) =
1

L

∫ θ

−θ

du r · r cos u =
2r2 sin θ

L
=

r sin θ

θ
,

since L = 2rθ. ȳ = 0 by symmetry and so the centroid is at a distance of r sin θ/θ
from the centre.
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