231 Outline Solutions Tutorial Sheet 1, 2 and 3.!2

6 November 2005

Problem Sheet 1

1. Rewrite the integral

1= [t [ ay oty )

as a double integral with the opposite order of integration.

Solution:The range of y values: 1 <y < e. For a fixed y,  has the range logy <

z < 1. Hence .
1= [y [ oot )
1 logy

Izlfw¢ (3)

where D is the interior of the ellipsoid defined by

2. Consider the integral

ZL’2 y2 22

Stmt =l (4)

Write down [ as an iterated triple integral.

Solution:Upper surface of ellipsoid ia

whereas the lower surface is
22 g2
z2=—cy\/1— ? — b_2 (6)
The surfaces join at z = 0 where mg + 4 b2 = 1, this provides range of r and y

integrations: y = —b4/1 — % Ztoy= +b4/1 — 22 and r = —a to = a:

+b\/1f— +c\/172—§7%
I—/ dx / dy dz ¢(x,y, 2). (7)
—a b\/lfz—g .
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3. The Gaussian integral formula

/ T e = JF (8)

[e o]

can be derived easily with the help of polar coordinates. The trick is to note that
the square of the integral can be recast as a double integral over R*:

0o 2
( / dx e”) = / dA eV, (9)
—00 R2

By changing to polar coordinates evaluate this integral.

Solution:After changing to polars and making sure to include the Jacobian J = r

2m 00
/ dA e = / do / dr re™"” (10)
R? 0 0

and then do this integral by substituting u = 72 so du = 2rdr to give

12:7r/ due™ = (11)
0

as required.
Problem Sheet 2

1. Compute the Jacobian of the transformation from cartesian to parabolic cylinder

coordinates
_ 1 2 2 _
ZL‘—Q(U —v),  y=uv. (12)
Solution:Well
oz 9z
8§
ou ov
B U —v
o u
= u+ 0% (13)

2. Determine the volume of the region enclosed by the cylinder 22 + % = 4 and the
planes y + z = 4 and z = 0. Suggestion: Use Cartesian coordinates.

Solution:Range of integration: z =0to z =4 —y, y = —V4 — 22 to y = +v4 — x?

and £ = —2 to x = 2. Thus the volume is

+vV4—z2 +V4—z2
/ dz / / dz 1 —/ dx / —v), (14)
-2 Va—z2 -2 NZ——

2



the z integral being trivial. The y integral is also straightforward:
2
V:/ dr 8v4 — x? =821 = 16m. (15)
-2

The final integral can be evaluated by elementary means: either make the standard
substitution (z = 2sin#) or simply note that the integral represents the area of a
semi-circle of radius 2.

. Check that the Jacobian for the transformation from cartesian to spherical polar
coordinates is

J =r?sinf.
Consider the hemisphere defined by

Va?+y? 422 <1, z>0.

Using spherical polar coordinates compute its volume and centroid.

Solution:Spherical polar coordinates are defined by

r = rsinfcos o,
y = rsinfsin @,
z = rcos. (16)
The Jacobian is
.y, ) gr g@ g¢ §1n 0 (?os ¢ rcosf Cf)S ¢ —r §1n 0 sin ¢
— = |5 & 8_35 = | sinfsin¢g rcosfsing  rsinfcos o
o(r. 0, ¢) % g; BZ cosf —rsind 0
= r sin? 6 [COS Qcos & + cos? 62 sin? ¢? + sin® 6 cos? ¢ + sin” O sin? gb]
= r’sin6. (17)

Volume = [, dV. Centroid z = § = 0 by symmetry and z = [, dV z/ [,, dV. Now

/dV :/ dqs/ d@/ d'r’rsmt9—27r/2 d@sin&%.
D

=27/3 (18)

= — gﬂ'COSH

as expected.

The other integral is

% 1 %71’ 1
/de = / dqﬁ/ do / dr r2sinc9~7’c080:27r/ df sin 6 cos 0 1
D 0

1

37
=T g lenn =T 1
2/0 2sm 1 (19)

and therefore z = 3/8.



4. Determine the curl of the vector fields

(a) F=—yzsinz i+ zcosx j+ycosz k.
(b) F=1iyi—iz].

Solution:The first one has curl F = ysin zj — zsin zk and the second curl F = —k.

5. Show that away from the origin the vector field
r
F= P33
is divergenceless.
Solution:So 5 5 5
dxrd3  Oyrd  Oyrd
Using the product rule

0 x P =3a(@/r)r* 1 32

ox r3 70 73 7D

and so 5 32 ) )
T r

using r? = 22 + y? + 2%. Note by the way we have used

0 0 T
Y. _ Y /2 2 2 _ 7
aZET ox Ayt r
using the chain rule.
Problem Sheet 3

1. Rewrite the integral

1 s
Iz/ dy/4 dx ¢(z,y),
0 tan—ly

(20)

(21)

(22)

(24)

as an iterated double integral with the opposite order of integration. Compute the

area of the region of integration.

Solution:Here x = iw is the right boundary and x = tan™!y is the left boundary. A
quick sketch shows that the left boundary is also the upper boundary which can be

written y = tanx. The lower boundary is y = 0 and 0 < z < iW.Thus

iT( tanx
I :/ dx / dy o(x,y).
0 0

(25)



Area obtained by setting ¢(z,y) = 1:

s tan
A = / dx / dy
0 0

lﬂ'
= / dx tanz = — log(cos z)|§
0

(l L 1 1)
= —(log—= —1lo
g\/§ g
log 2

: (26)

=

N

2. Compute the element of area for elliptic cylinder coordinates which are defined as

x = acoshucosv (27)
= asinhusinv. (28)
Solution:0 A = Joudv with
J = % % _||asinhucosv  —acoshusinv
a % % ~ ||acoshusinw asinh u cosv
= a*(sinh®u cos? v + cosh® u sin? v) (29)
This can be simplified a bit:
J = a*(sinh®ucos? v + cosh® usin? v) = a?[sinh”® u(1 — sin v) 4 cosh® u sin? v]
= a*[sinh® +sin® v(cosh® — sinh® u)] (30)

Using cosh? u — sinh® u = 1 gives J = a?(sinh® u + sin®v).

3. Compute the area and centroid of the plane region enclosed by the cardioid r(6) =
1 4 cos @ (r and € are polar coordinates).

Solution:Use polar coordinates to evaluate area integral; 6 ranges from 0 to 27 and
r ranges from 0 to 1 + cosé and the Jacobian is J = r

27 1+cos 6
A = /dV:/ d@/ dr r
D 0 0
1

2
:/ df ~(1 + cosh)?
0 2
1 2
= 5/ df (14 2cosf + cos® )
_ 1(20 04my =2 (31)
= 52 T) =5

since cos @ integrates to zero and the average value of cos? 0 is %

bt



Similarily

2r 1+4cos @
do / dr 12 cosf
0

/de =
D

S~

2m 1
/ df ~(1 + cosf)?cosf
0 2

2
/ df (cos @ + 3 cos® + 3 cos® O + cos* 0)
0

— Wl Wl

w

3 5
g — — = - 2
(37r+0—|— 47r> 1T (32)

and so T = 5/6. By symmetry y = 0.
. Show that away from the origin the vector field

r r
- =3 (33)

F = 3

r

is irrotational (here r = zi + yj + zk and r = |r| = /a2 + y2 + 22).
Solution:Note that F = grad (—1/r) and so curl F = 0. This can also be done by
direct calculation.

. Prove the identity
Vx(VxF)=V(V-F)-AF. (34)

Solution:Lets do the first component:

0 0
[V X (V X F)]l = 8_y<F2’m — FLy) — @(FB,m — Fl,z) (35)

where F = F1i + F5j + F3k and I am using a comma notation for differenciation so
for example

oF:
Fpp= a—; (36)
Now, taking away some brackets
[V X (V X F)]l = FQ,xy — Fl,yy — Fg’xz — Fl,zz (37)
Coming from the other side
0
[V(v . F)]l - %(Fl,x + F2,y + F3,z) = Fl,xx + FQ,yJ: + F3,za: (38)
SO
[V X (V X F)]l — [V(V . F)]l = Fl,l‘l‘ + Fl,yy + Fl,zz = [AF]l (39)

and similarily for the other components.



