
231 Outline Solutions Tutorial Sheet 10, 11 and 12.12

8 Febuary 2006

Problem Sheet 10

1. Find the Fourier series representation of the sawtooth function f defined by f(x) = x
for −π < x < π and f(x + 2π) = f(x).

Solution:f is odd so an = 0 for all n.

bn =
1

π

∫ π

−π

dx x sin nx = − x cos nx

nπ

∣

∣

∣

π

π
+

1

π

∫ π

−π

cos nx

n
.

The integral on the RHS is zero since it is just a cosine integrated over a full period
(or n periods). Thus bn = −2 cos(nπ)/n = −2(−1)n/n which gives

f(x) = −2

∞
∑

n=1

(−1)n

n
sin nx.

2. Establish that
∫ π

−π

dx sin mx sin nx =

∫ π

−π

dx cos mx cos nx = 0,

if m 6= n (both m and n are integers).

Solution:In this question m and n will be taken as positive integers. The problem
can be tackled using complex exponentials or trig identities. Using the identity

2 sin A sin B = cos(A − B) − cos(A + B),

∫ π

−π

dx sin mx sin nx =
1

2

∫ π

−π

dx [cos(m − n)x − cos(m + n)x] ,

which is zero (integral of cosine over full periods) provided m − n and m + n are
non-zero. To show that

∫ π

−π

dx cos mx cos nx = 0,

use
2 cos A cos B = cos(A + B) + cos(A − B).

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Including material from Chris Ford, to whom many thanks.
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3. The periodic function f is defined by

f(x) =

{

sin x 0 < x < π
0 −π < x < 0

and f(x + 2π) = f(x).

(a) Represent f(x) as a Fourier series.

Solution:This function is neither odd nor even, though the only non-zero bn

coefficient is b1 = 1
2

(since f(x) = 1
2
sin x + | sin x| and | sinx| is even). Now to

the an coefficients

an =
1

π

∫ π

−π

dx cos nx f(x) =
1

π

∫ π

0

dx cos nx sin x

This can be computed via complex exponentials or through the identity

2 sin A cos B = sin(A + B) + sin(A − B):

an =
1

2π

∫ π

0

dx [sin(1 + n)x + sin(1 − n)x] = − 1

2π

(

cos(1 + n)x

1 + n
+

cos(1 − n)x

1 − n

)
∣

∣

∣

∣

π

0

.

Now cos(1 + n)π = cos(1 − n)π = −(−1)n, and so

an = − 1

2π
(−(−1)n − 1)

(

1

1 + n
+

1

1 + n

)

=
1

π
(1 + (−1)n)

1

1 − n2
.

This is ambiguous for n = 1; it is trivial to check that a1 = 0. Putting everything
together

f(x) =
1

π
+

2

π

∑

n>0,even

cos nx

1 − n2
+

1

2
sin x,

or

f(x) =
1

π
+

2

π

∞
∑

m=1

cos 2mx

1 − 4m2
+

1

2
sin x.

(b) Derive the remarkable formula

1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ ... =

1

2
.

Solution:f(0) = 0 leads to the amazing formula

1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ ... =

1

2
.
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Problem Sheet 11

1. Express the following periodic functions (l = 2π) as complex Fourier series

(a)

f(x) =







0 −π < x < −a
1 −a < x < a
0 a < x < π

where a ∈ (0, π) is a constant.

Solution:f(x) =
∑

n∈Z cneinx with

cn =
1

2π

∫ π

−π

dx e−inxf(x) =
1

2π

∫ a

−a

dx e−inx

so that c0 = a/π and

cn =
1

2π

e−inx

−in

∣

∣

∣

∣

a

−a

=
1

πn

eian − e−ian

2i
=

1

πn
sin an.

(b)

f(x) =
1

2 − eix
.

Solution:This can be expanded as a geometric series which is exactly the complex
Fourier series!

f(x) =
1

2 − eix
=

1

2

1

1 − 1
2
eix

=
1

2

∞
∑

n=0

1

2n
einx.

2. Show that the periodic function f defined by f(x) = |x| − 1
2
π for −π < x < π and

f(x + 2π) = f(x) has the Fourier series expansion

f(x) = − 4

π

∑

n>0, odd

cos nx

n2
.

Solution:f is even so bn = 0 for all n.

an =
1

π

∫ π

−π

dx cos nx

(

|x| − 1

2
π

)

.

A quick calculation gives a0 = 0. For n > 0 use the fact that cos nx integrates to
zero over a full period

an =
1

π

∫ π

−π

dx |x| cos nx =
2

π

∫ π

0

dx x cos nx

3

=
2

π

(

x sin nx

n

∣

∣

∣

∣

π

0

−
∫ π

0

dx
sin nx

n

)

= 0 +
2

π

cos nx

n2

∣

∣

∣

π

0
=

2

π

((−1)n − 1)

n2
.

Thus an = 0 if n is even and an = −4/(πn2) if n odd.

3. Use the Fourier series given in question 2 to compute the following sums

S1 = 1 − 1

32
− 1

52
+

1

72
+

1

92
− 1

112
− 1

132
+ ...

S2 = 1 +
1

34
+

1

54
+

1

74
+ ...

Remark: With calculations of this kind it makes sense to try a quick numerical check
of your answer.

Solution:To compute S1 set x = π/4 in the Fourier series quoted in question 1

f
(π

4

)

= − 4

π

1√
2
S1.

Since f(π
4
) = −π

4
one has

−π

4
= − 1√

2

4

π
S1,

so that

S1 =

√
2π2

16
.

ii) The average value of |f |2 is

1

2π

∫ π

−π

dx |f(x)|2 =
1

2π

∫ π

−π

dx

(

|x| − 1

2
π

)2

=
1

π

∫ π

0

dx

(

x − 1

2
π

)2

.

A short calculation gives that this is equal to π2/12. Applying Parseval’s theorem

π2

12
=

1

4
|a0|2 +

1

2

∞
∑

n=1

(

|an|2 + |bn|2
)

=
1

2
· 16

π2
S2,

and so

S2 =
π4

96
.
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Problem Sheet 12

1. The Riemann zeta function is defined as follows

ζ(s) =
∞

∑

n=1

1

ns
(s > 1).

(a) By applying Parseval’s theorem for Fourier series to the sawtooth f(x) = x for
−π < x < π compute

ζ(2) =

∞
∑

n=1

1

n2
.

Solution:From earlier calculations, the Fourier coeficients for the sawtooth are
an = 0 and bn = −2(−1)n/n. Applying Parsevals theorem:

1

2π

∫ π

−π

dx x2 =
1

2

∑

n=1

4

n2
= 2ζ(2)

The LHS is just π2/3 which gives ζ(2) = π2/6.

(b) Consider the Fourier expansion of f(x) = x2, −π < x < π, and use the result
to show that

ζ(4) =
∞

∑

n=1

1

n4
=

π4

90
.

Solution:Consider f(x) = x2 − π < x < π an even function so that bn = 0.
The an can be obtained in the usual way (although one must integrate by parts
twice). An alternative way is to integrate the Fourier series for the sawtooth

x = −2
∞

∑

n=1

(−1)n sin nx

n
− π < x < π

Integration with respect to x yields

x2

2
= 2

∞
∑

n=1

(−1)n cos nx

n2
+ C,

where C is a constant of integration. This constant can be determined by
integrating both sides from x = −π to x = π:

x3

6

∣

∣

∣

∣

π

−π

= 2πC,

which gives C = π2/6. According to Parseval’s theorem the average value of
|f(x)|2 is given by the sum

1

4
|a0|2 +

1

2

∞
∑

n=1

(

|an|2 + |bn|2
)

,

5

where an and bn are the Fourier coefficients of f . For f(x) = x2, an = 4(−1)n/n2

for n > 0 and a0 = 4C = 2π2/3. The average value of |f(x)|2 = x4 is given by

1

2π

∫ π

−π

x4 dx =
π4

5
.

Applying Parseval’s theorem

π4

5
=

π4

9
+ 8ζ(4),

and so

ζ(4) =
π4

8

(

1

5
− 1

9

)

=
π4

90
.

2. Compute the Fourier transform of f(x) = e−a|x| where a is a positive constant. Use
the result to show that

∫ ∞

−∞

dp
cos p

1 + p2
=

π

e
.

Solution:

f̃(k) =
1

2π

∫ ∞

−∞

dx e−ikx f(x)

=
1

2π

∫ ∞

−∞

dx e−ikx e−a|x| =
1

2π

[
∫ ∞

0

dx e−ikx−ax +

∫ 0

−∞

dx e−ikx+ax

]

=
1

2π

[

−e−x(a+ik)

a + ik

∣

∣

∣

∣

∞

0

− ex(a−ik)

a − ik

∣

∣

∣

∣

0

−∞

]

=
1

2π

[

1

a + ik
+

1

a − ik

]

=
1

π

a

a2 + k2
.

f can be represented as a Fourier integral

f(x) =

∫ ∞

−∞

dk eikx f̃(k) =
a

π

∫ ∞

−∞

dk
eikx

a2 + k2
.

Setting a = 1 and x = 1 gives

e−1 =
1

π

∫ ∞

−∞

dk
eik

1 + k2
.

Taking the real part (and multiplying by π)

π

e
=

∫ ∞

−∞

dk
cos k

1 + k2
.
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3. Determine the Fourier transform of the Gaussian function

f(x) = e−αx2

,

where α is a positive constant.

Solution:Completing the square

∫ ∞

−∞

dx e−αx2+βx =

∫ ∞

−∞

dx e−α(x− β

2α
)2+ 1

4
β2/α.

Making the change of variables y = x − β
2α

gives

∫ ∞

−∞

dx e−αx2+βx = e
1

4
β2/α

∫ ∞

−∞

dy e−αy2

= e
1

4
β2/α

√

π

α
,

using the standard Gaussian integral formula. This derivation assumes that β is
real. However, we assume the result is valid for complex β to compute the Fourier
transform of f(x) = e−αx2

:

f̃(k) =
1

2π

∫ ∞

−∞

dx e−ikxe−αx2

=
1

2π
·
√

π

α
e−

1

4
k2/α,

by formally taking β = −ik.
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