231 Outline Solutions Tutorial Sheet 10, 11 and 12.'2 3. The periodic function f is defined by

. sine 0<z<m
fay=q5m Y .
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Problem Sheet 10 and f(z +2m) = f(x).

1. Find the Fourier series representation of the sawtooth function f defined by f(x) = (2) Represent f(z) as a Fourier series.

for —7 <z < 7 and f(z + 27) = f(). Solution:This function is neither odd nor even, though the only non-zero b,
coefficient is by = 1 (since f(z) = sinz + |sinz| and |sinz| is even). Now to
the a,, coefficients
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Solution: f is odd so a,, = 0 for all n.
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The integral on the RHS is zero since it is just a cosine integrated over a full period

( ‘ods). Thus b 2 cos(nr)/ 2(—1)" /n which gi This can be computed via complex exponentials or through the identity
or n periods). Thus b, = —2cos(nnm)/n = —2(— n which gives

2sin Acos B = sin(A + B) + sin(A — B):
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n=1

n n = oo ; dz [sin(1+n)x +sin(l —n)z] = ~5r it T
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. Establish that Now cos(1 4+ n)7 = cos(1 —n)m = —(—1)", and so
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if m # n (both m and n are integers). This is ambiguous for n = 1; it is trivial to check that a; = 0. Putting everything

Solution:In this question m and n will be taken as positive integers. The problem together

1 2 1
can be tackled using complex exponentials or trig identities. Using the identity Z (IOS n:cz + 3 sin z,
T osoeven -
2sin Asin B = cos(A — B) — cos(A + B),
. L +2i0052mw+1,
= — ——— + —sinxz.
/ dr sinmasinnz = 5 / dz [cos(m — n)x — cos(m + n)z], 7T 1—4m? 2

m=1
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which is zero (integral of cosine over full periods) provided m — n and m + n are Derive the remarkable formula
non-zero. To show that . 1 1 1

1
dz cosmzx cosnx =0, 21 + 21 + 21 +.. 3
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Solution: f(0) = 0 leads to tl zing f 1
2cos Acos B = cos(A+ B) + cos(A — B). olution: f(0) eads to the amazing formula

1 1 1 1
LConor Houghton, houghton@maths.tcd. ie, see also http://www.maths.tcd.ie/ houghton/231 + + +.==.
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Problem Sheet 11

1. Express the following periodic functions (I = 27) as complex Fourier series
(a)
flx) =

where a € (0,7) is a constant.
Solution: f(x) = Y,c; cne™ with
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so that ¢g = a/7 and
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Solution:This can be expanded as a geometric series which is exactly the complex
Fourier series!
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2. Show that the periodic function f defined by f(z) = |z| — %71’ for -7 < < 7 and
f(z +27m) = f(z) has the Fourier series expansion

(@) 7% Z cosnx.

n2
n>0, odd

Solution: f is even so b, = 0 for all n.
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ap = — dz cosnz | |z]— =7 ).
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A quick calculation gives ag = 0. For n > 0 use the fact that cosnz integrates to
zero over a full period
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a, = — dx |z| cosnz = — dx x cosnx
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Thus a, = 0 if n is even and a,, = —4/( 7n?) if n odd.

. Use the Fourier series given in question 2 to compute the following sums

1 1
¥ E T

Si=1-

1
So=14— 3 + 51 + 71 + ..
Remark: With calculations of this kind it makes sense to try a quick numerical check
of your answer.

Solution:To compute S; set & = 7/4 in the Fourier series quoted in question 1
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Since f(%§) = —7% one has
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Sl‘,
so that
Sl =

ii) The average value of | f|? is
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A short calculation gives that this is equal to 72/12. Applying Parseval’s theorem
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and so




Problem Sheet 12

1. The Riemann zeta function is defined as follows

¢(s) Z% (s > 1).

n=1

(a) By applying Parseval’s theorem for Fourier series to the sawtooth f(x) = x for
—7m < x < 7 compute

[es)

1
@=> —
n=1""
Solution:From earlier calculations, the Fourier coeficients for the sawtooth are
a, =0 and b, = —2(—1)"/n. Applying Parsevals theorem:
1 (7 , 1 4
] dz x :—;;:26(2)
The LHS is just 72/3 which gives ((2) = 72/6.
=z

Consider the Fourier expansion of f(x) 2 —m <z <7, and use the result

to show that

4

1
C(4) = Z; = g—o
n=1

Solution:Consider f(z) =22 — 7 <2 < an even function so that b, = 0.

The a,, can be obtained in the usual way (although one must integrate by parts
twice). An alternative way is to integrate the Fourier series for the sawtooth
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Integration with respect to x yields
x? . (—1)" cos na
— =2 ———+C
2 Z n? T
n=1
where C' is a constant of integration. This constant can be determined by
integrating both sides from z = —7 to x = 7:
3|7
x
—| =2rC,
6 -7
which gives C' = 72/6. According to Parseval’s theorem the average value of
| f(x)]? is given by the sum
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where a,, and b, are the Fourier coefficients of f. For f(z) = 22, a,, = 4(—=1)"/n?
for n > 0 and ag = 4C = 272/3. The average value of |f(z)* = z* is given by

1 T 4

Applying Parseval’s theorem

2. Compute the Fourier transform of f(z) = e~ where a is a positive constant. Use

the result to show that
o cosp T
dp > =
o 1+p e

Solution:
1 oC
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1 * —ikx _—alx| 1 * —ikz—ax 0 —ikx+ax
— dx e e = — dx e + dx e
21 J_o 2m o o

1 e—x(a+ik) e ew(a—ik) 0
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7o) d e f(z)

or | a+ik |, a—ik

1 1 n 1 _1 a
o la+ik  a—ik| wa?+ k2
f can be represented as a Fourier integral
00 by 7 a =] Cikx

Setting a = 1 and z = 1 gives

1 oo eik
1= dk ——.
¢ 71'/,Oo 1+ k2

Taking the real part (and multiplying by )

T "0 cosk
e ’/, dk 14 k2
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3. Determine the Fourier transform of the Gaussian function

J@) = e,

where « is a positive constant.

Solution:Completing the square
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Making the change of variables y = x — % gives

00 o0 T
/ dp e~ o7 hr — e%ﬂz/“/ dy e = e%ﬂz/a\/i7
J oo o a

using the standard Gaussian integral formula. This derivation assumes that (§ is
real. However, we assume the result is valid for complex [ to compute the Fourier
transform of f(z) = e~**:
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by formally taking 8 = —ik.




