231 Tutorial Sheet 8^{12}

2 December 2005

Useful facts:

- The vector potential: on a domain with no internal boundary, a smooth vector vector field \mathbf{F} with zero divergence has a vector field \mathbf{A} so that $\mathbf{F} = \nabla \times \mathbf{A}$.
- Hodge decomposition: under some conditions, a general smooth vector field can be written in the form $\mathbf{F} = \nabla \times \mathbf{A} + \nabla \phi$ for some smooth vector field \mathbf{A} and some scalar field ϕ .

Questions

- 1. Obtain a vector potential for the solenoidal vector field: $\mathbf{F} = x\mathbf{i} + y\mathbf{j} 2z\mathbf{k}$
- 2. Obtain a vector potential for the solenoidal vector field: $\mathbf{F} = e^x \mathbf{k}$.
- 3. Find a Hodge decomposition for the vector field $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.