231 Tutorial Sheet 7^{12}

25 November 2005

Useful facts:

• The Gauss Divergence Theorem: If D is connected region in \mathbb{R}^3 with a piecewise smooth surface S oriented to point out of D and if \mathbf{F} is a vector field defined in a region containing D and with continuous derivatives then

$$\int_{D} dV \nabla \cdot \mathbf{F} = \int_{S} \mathbf{F} \cdot \mathbf{dA}$$
(1)

Questions

- 1. Which of the following vector fields are conservative?
 - (a) $\mathbf{F} = -yz \sin x \, \mathbf{i} + z \cos x \, \mathbf{j} + y \cos x \, \mathbf{k}.$
 - (b) **F** = $\frac{1}{2}y$ **i** $\frac{1}{2}x$ **j**.
 - (c) $\mathbf{F} = \frac{1}{2} (\mathbf{B} \times \mathbf{r})$ where **B** is a constant vector.
- 2. Using Gauss' theorem or otherwise compute the flux of the vector field $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ through the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$ with the orientation taken upwards. What is the flux out of the whole sphere?
- 3. Consider, again, the vector field

$$\mathbf{F} = \frac{\mathbf{r}}{r^3}, \qquad \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

- (a) Compute the flux of \mathbf{F} out of a sphere of radius a centred at the origin.
- (b) Compute the flux of **F** out of the box $1 \le x \le 2, 0 \le y \le 1, 0 \le z \le 1$.
- (c) Compute the flux of **F** out of the box $-1 \le x \le 1, -1 \le y \le 1, -1 \le z \le 1$.

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231 ²Including material from Chris Ford, to whom many thanks.