231 Tutorial Sheet 2^{12}

21 October 2005

Useful facts:

• The Jacobian in three-dimensions:

$$dx_1 dx_2 d_3 = J dy_1 dy_2 dy_3 \tag{1}$$

where

$$J = \frac{\partial(x_1, x_2, x_3)}{\partial(y_1, y_2, y_3)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \frac{\partial x_1}{\partial y_3} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \frac{\partial x_2}{\partial y_3} \\ \frac{\partial x_3}{\partial y_1} & \frac{\partial x_3}{\partial y_2} & \frac{\partial x_3}{\partial y_3} \end{vmatrix}$$
(2)

• For a scalar field ϕ the gradient is

$$\operatorname{grad} \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}$$
 (3)

• If \mathbf{a} is a vector $\hat{\mathbf{a}}$ is the corresponding unit vector

$$\hat{\mathbf{a}} = \frac{1}{|\mathbf{a}|} \mathbf{a} \tag{4}$$

- The direction derivative of a scalar field f in the \mathbf{a} direction is $D_{\mathbf{a}}f = \hat{\mathbf{a}} \cdot \nabla f$.
- For a vector field $\mathbf{F} = (F_1, F_2, F_3)$ the divergence is

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
 (5)

• For a vector field $\mathbf{F} = (F_1, F_2, F_3)$ the curl is

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
 (6)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

²Including material from Chris Ford, to whom many thanks.

Questions

1. Compute the Jacobian of the transformation from cartesian to parabolic cylinder coordinates

$$x = \frac{1}{2}(u^2 - v^2), \quad y = uv.$$

- 2. 2. Determine the volume of the region enclosed by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0. Suggestion: Use Cartesian coordinates.
- 3. Check that the Jacobian for the transformation from cartesian to spherical polar coordinates is

$$J = r^2 \sin \theta$$
.

Consider the hemisphere defined by

$$\sqrt{x^2 + y^2 + z^2} \le 1, \qquad z \ge 0.$$

Using spherical polar coordinates compute its volume and centroid.

- 4. Determine the curl of the vector fields
 - (a) $\mathbf{F} = -yz\sin x \,\mathbf{i} + z\cos x \,\mathbf{j} + y\cos x \,\mathbf{k}$.
 - (b) $\mathbf{F} = \frac{1}{2}y \, \mathbf{i} \frac{1}{2}x \, \mathbf{j}$.
- 5. Show that away from the origin the vector field

$$\mathbf{F} = \frac{\hat{\mathbf{r}}}{r^3} = \frac{\mathbf{r}}{r^3}$$

is divergenceless.