231 Tutorial Sheet 11: due Friday Febuary $3.^{12}$

27 January 2005

Useful facts:

• Parceval's formula:

$$\frac{1}{l} \int_{-l/2}^{l/2} dx |f(x)|^2 = \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$
$$= \sum_{n=-\infty}^{\infty} |c_n|^2$$

• The Fourier integral or Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} dk \, \widetilde{f(k)} e^{ikx}$$
$$\widetilde{f(k)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, f(x) e^{-ikx}$$

• The Plancherel formula

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, |f(x)|^2 = \int_{-\infty}^{\infty} dk \, |\widetilde{f(k)}|^2$$

Questions

1. The Riemann zeta function is defined as follows

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 (s > 1).

(a) By applying Parseval's theorem for Fourier series to the sawtooth f(x) = x for $-\pi < x < \pi$ compute

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

(b) Consider the Fourier expansion of $f(x) = x^2$, $-\pi < x < \pi$, and use the result to show that

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

²Including material from Chris Ford, to whom many thanks.

Remark:

It is straightforward to compute $\zeta(n)$ if n is an even integer. On the other hand, no simple formulae are available for the odd integers, i.e. $\zeta(3)$, $\zeta(5)$, etc. Though, of course, they can be computed numerically.

The definition of $\zeta(s)$ straightforwardly extends to complex values of s. The sum defining $\zeta(s)$ clearly converges for any complex s where Re s>1. In fact, the function can be 'analytically continued' to any complex s (apart from s=1). Such a continuation boils down to finding an alternative expression for $\zeta(s)$ that agrees with the given definition when Res s>1 but makes sense for any $s\neq 1$. It is rather easy to continue to s values such that Re s>0. One recasts the zeta function as an alternating series

$$\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^s}.$$

A long standing problem in mathematics is to find the zeros of $\zeta(s)$. It is known that $\zeta(s)$ has zeros at the points s=-2n where n is a natural number and that all other zeros lie in the strip $0 \le \text{Re } s \le 1$.

Riemann's hypothesis: All zeros of $\zeta(s)$ in the strip $0 \le \text{Re } s \le 1$ lie on the line $\text{Re } s = \frac{1}{2}$.

2. Compute the Fourier transform of $f(x) = e^{-a|x|}$ where a is a positive constant. Use the result to show that

$$\int_{-\infty}^{\infty} dp \, \frac{\cos p}{1+p^2} = \frac{\pi}{e}.$$

3. Determine the Fourier transform of the Gaussian function

$$f(x) = e^{-\alpha x^2},$$

where α is a positive constant.

Suggestions: Compute the integral

$$\int_{-\infty}^{\infty} dx \ e^{-\alpha x^2 + \beta x},$$

where β is real. To do this, first consider the case $\beta = 0$. Infer the result for $\beta \neq 0$ by a simple change of variable in the integral. Then formally allow β to be imaginary (you may wish to postpone the justification of this procedure to a later date!).