
2008 Schol exam, three hours, do six. Out-

line solutions.

1. Find the volume of the region enclosed between the paraboloids

z = 5x2 + 5y2

z = 6 − 7x2 − y2

Solution:The volume is the integral of one; the awkward part is deciding
what the limits of the integral are, for this, the z-part is easy, it is given,
for the x and y limits we need the projection of the solid region down
on to the xy-plane. By sketching the situation it is easy to see that
the projection is given by the intersection, both parabolas are getting
bigger as the spread out from the apices. Now the intersection is at

5x2 + 5y2 = 6 − 7x2 − y2 (1)

which implies 2x2 + y2 = 1, an ellipse, hence

V =
∫ 1/

√
2

−1/
√

2
dx
∫

√
1−2x2

−
√

1−2x2

dy
∫ 6−7x2−y2

5x2+5y2

dz

=
∫ 1/

√
2

−1/
√

2
dx
∫

√
1−2x2

−
√

1−2x2

dy(6− 12x2 − 6y2)

= 8
∫ 1/

√
2

−1/
√

2
dx(1 − 2x2)3/2 (2)

Now we need to do a cosine substitution for x

V =
8√
2

∫ π/2

−π/2
dθcos4θ =

3π√
2

(3)

2. (a) What is the Jacobian? In two-dimensions calculate the Jacobian

dxdy = Jdvdu

where x and y are the usual Cartesian coördinates and x = u+v/2
and y = v.

(b) Calculate
∫ 2

0
dy
∫ (y+4)/2

y/2
dxy3(2x − y)e2x−y
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(c) Convert to spherical coördinates and evaluate

∫ 1

0
dx
∫

√
1−x2

0
dy
∫

√
1−x2−y2

0
dz

1

1 + x2 + y2 + z2

Solution:Now, for a two-dimensional integral, consider the change
of variables from (x, y) to (u, v) related by

x = x(u, v)
y = y(u, v) (4)

then ∫

D
dxdyφ(x, y) =

∫

D
dudvφ(x(u, v), y(u, v))J (5)

where the Jacobian J is the absolute value of the determinant

J =

∥

∥

∥

∥

∥

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∥

∥

∥

∥

∥

(6)

For x = u + v/2 and y = v the Jacobian is

J =

∥

∥

∥

∥

∥

1 1/2
0 1

∥

∥

∥

∥

∥

= 1 (7)

Now for the integral
∫ 2

0
dy
∫ (y+4)/2

y/2
dxy3(2x− y)e2x−y = int20 dv

∫ 2

0
duv3ue2u = 3e4 +1

(8)
where integration by parts was used to do the u integral.

As for the second integral; as suggested, change to spherical polars
∫ 2π

0
dφ
∫ 1

0
dr
∫ π/2

0
dθr2 sin θ

1

1 + r2
= 2π

∫ 1

0
dr

r2

1 + r2

= 2π
(

1 − π

2

)

(9)

where the r integral can be done using a tan substitution.

3. State the Stokes theorem and give an outline proof which shows how
the Stokes theorem can be reduced to Green’s Theorem for vector fields
of the form F = F3(x, y, z)k where S is of the form z = h(x, y). Explain
briefly how this special case is used to prove the Stokes theorem.

Solution:This is from the notes, see I.5.
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4. For r = (x, y, z) the usual position vector show that

(a)

div grad
1

r
= 0

(b)

curl
[

k × grad
1

r

]

+ grad
[

k · grad
1

r

]

= 0

(c) If A is a constant vector

grad

(

A · r
r3

)

=
A

r3
− 3

A · r
r5

r

where r = |r|.

Solution:So, to begin

grad
1

r
=

∂

∂x

1

r
i +

∂

∂y

1

r
j +

∂

∂z

1

r
k

= − x

r3
i − y

r3
j− z

r3
k (10)

and hence

div grad
1

r
= − ∂

∂x

x

r3
− ∂

∂y

y

r3
− ∂

∂y

y

r3
= − 3

r3
+3

x2 + y2 + z2

r5
= 0 (11)

as required. Next

k × grad
1

r
= k ×

(

− x

r3
i − y

r3
j− z

r3
k

)

=
y

r3
i − x

r3
j (12)

so

curl
[

k × grad
1

r

]

=







−3xz
r5

−3yz
r5

1
r3 − 3z2

r5





 (13)

and

k · grad
1

r
= − z

r3
(14)

so

grad
[

k · grad
1

r

]

=
3xz

r5
i +

3yz

r5
i +

(

− 1

r3
+

3z2

r5

)

k (15)
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as required.

For the last part

grad

(

A · r
r3

)

=
A

r3
− 3

A · r
r5

r

where r = |r|, consider the i component
[

grad

(

A · r
r3

)]

1

=
∂

∂x

(

A · r
r3

)

=
A1

r3
− 3A · r x

r5
(16)

and adding the three components gives the result.

5. Prove that for two periodic functions f(x) and g(x) with the same
period l then

1

l

∫ c+l

c
dxf(x)g(x) =

∫ ∞

n=−∞
cnd∗

n

where cn and dn are the coefficients in the complex Fourier series for
f(x) and g(x) respectively. Deduce Parseval’s theorem from this.

Solution:Just substitute in

1

l

∫ c+l

c
dxf(x)g(x) =

1

l

∫ c+l

c
dx
∑

cne
inxl/2π

∑

dmeimxl/2π (17)

and then do a change of index to send m to −m and use d−m = d∗
m to

get

1

l

∫ c+l

c
dxf(x)g(x) =

∑

n

∑

m

cnd∗
m

1

l

∫ c+l

c
dxeinxl/2πe−imxl/2π (18)

and then the integral gives the required Kronecker δ-function. Setting
f = g gives Parseval’s theorem.

6. Calculate the Fourier transform, f̃(k), for the following pulses.

(a) The rectangular pulse

f(x) =

{

A |x| ≤ L
0 |x| > L

where A is a constant.
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(b) The two-sided exponential pulse

f(x) =

{

eax |x| ≤ 0
e−ax x > 0

where a > 0 is a constant.

Solution:The rectangular pulse is just a matter of integration

f̃(k) =
1

2π

∫ ∞

−∞
dx f(x)e−ikx =

A

2π

∫ L

−L
dxe−ikx =

A sin kL

π
(19)

The two-sided exponential is 07-08 PS11 q4.

7. The function φ(x) is monotone increasing in [a, b] and has a zero at
x = c where a < c < b and φ′(c) 6= 0. Show that

∫ b

a
f(x)δ[φ(x)]dx =

f(c)

φ′(c)

Show that the same formula applies if φ(x) is monotone decreasing and
hence derive a formula for general φ(x) provided the zeros are simple.
Deduce that

δ(ax) =
δ(t)

|a|
for a 6= 0. Also establish that

∫ ∞

−∞
|x|δ(x2 − a2) = 1

Solution:Most of this question is from the notes, it is II.3. The bit at
the end is new; there are two roots of x2 − a2; x = ±a and at each the
slope has absolute value 2a hence

δ(x2 − a2) =
1

2a
[δ(x − a) + δ(x + a)] (20)

and
∫∞
−∞ |x|δ(x − a) =

∫∞
−∞ |x|δ(x + a) = a giving the result.

8. Find the general solution to

y′′′ − 3y′′ + 3y′ − y = ex

5



Solution:So the auxillary equation is

λ3 − 3λ2 + 3λ − 1 = 0 (21)

giving λ = 1 three times. Hence, you might guess that the solution to
the homogeneous equation is

y = C1e
x + C2xex + C3x

2ex (22)

and this can be confirmed by just substituting in. For the inhomoge-
nous equation try y = Cx3ex, substituting in gives

6C = 1 (23)

so C = 1/6.
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