2008 Schol exam, three hours, do six.

1. Find the volume of the region enclosed between the paraboloids

$$
\begin{aligned}
& z=5 x^{2}+5 y^{2} \\
& z=6-7 x^{2}-y^{2}
\end{aligned}
$$

2. (a) What is the Jacobian? In two-dimensions calculate the Jacobian

$$
d x d y=J d v d u
$$

where x and y are the usual Cartesian coördinates and $x=u+v / 2$ and $y=v$.
(b) Calculate

$$
\int_{0}^{2} d y \int_{y / 2}^{(y+4) / 2} d x y^{3}(2 x-y) e^{2 x-y}
$$

(c) Convert to spherical coördinates and evaluate

$$
\int_{0}^{1} d x \int_{0}^{\sqrt{1-x^{2}}} d y \int_{0}^{\sqrt{1-x^{2}-y^{2}}} d z \frac{1}{1+x^{2}+y^{2}+z^{2}}
$$

3. State the Stokes theorem and give an outline proof which shows how the Stokes theorem can be reduced to Green's Theorem for vector fields of the form $\mathbf{F}=F_{3}(x, y, z) \mathbf{k}$ where S is of the form $z=h(x, y)$. Explain briefly how this special case is used to prove the Stokes theorem.
4. For $\mathbf{r}=(x, y, z)$ the usual position vector show that
(a)

$$
\operatorname{div} \operatorname{grad} \frac{1}{r}=0
$$

(b)

$$
\operatorname{curl}\left[\mathbf{k} \times \operatorname{grad} \frac{1}{r}\right]+\operatorname{grad}\left[\mathbf{k} \cdot \operatorname{grad} \frac{1}{r}\right]=0
$$

(c) If \mathbf{A} is a constant vector

$$
\operatorname{grad}\left(\frac{\mathbf{A} \cdot \mathbf{r}}{r^{3}}\right)=\frac{\mathbf{A}}{r^{3}}-3 \frac{\mathbf{A} \cdot \mathbf{r}}{r^{5}} \mathbf{r}
$$

where $r=|\mathbf{r}|$.
5. Prove that for two periodic functions $f(x)$ and $g(x)$ with the same period l then

$$
\frac{1}{l} \int_{c}^{c+l} d x f(x) g(x)=\int_{n=-\infty}^{\infty} c_{n} d_{n}^{*}
$$

where c_{n} and d_{n} are the coefficients in the complex Fourier series for $f(x)$ and $g(x)$ respectively. Deduce Parseval's theorem from this.
6. Calculate the Fourier transform, $\tilde{f}(k)$, for the following pulses.
(a) The rectangular pulse

$$
f(x)= \begin{cases}A & |x| \leq L \\ 0 & |x|>L\end{cases}
$$

where A is a constant.
(b) The two-sided exponenetial pulse

$$
f(x)= \begin{cases}e^{a x} & x \leq 0 \\ e^{-a x} & x>0\end{cases}
$$

where $a>0$ is a constant.
7. The function $\phi(x)$ is monotone increasing in $[a, b]$ and has a zero at $x=c$ where $a<c<b$ and $\phi^{\prime}(c) \neq 0$. Show that

$$
\int_{a}^{b} f(x) \delta[\phi(x)] d x=\frac{f(c)}{\phi^{\prime}(c)}
$$

Show that the same formula applies if $\phi(x)$ is monotone decreasing and hence derive a formula for general $\phi(x)$ provided the zeros are simple. Deduce that

$$
\delta(a x)=\frac{\delta(t)}{|a|}
$$

for $a \neq 0$. Also establish that

$$
\int_{-\infty}^{\infty}|x| \delta\left(x^{2}-a^{2}\right)=1
$$

8. Find the general solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{x}
$$

