231 FS 2006 q5/6 Outline Solution. ${ }^{1}$

12 February 2007
5. Ok so, it didn't say whether to take the real of the complex Fourier series: lets take the real. $|\cos x|$ is periodic with period π so

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} d x|\cos x| \cos n x=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} d x \cos x \cos n x \tag{1}
\end{equation*}
$$

and,

$$
\begin{align*}
\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} d x \cos x \cos n x & =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} d x\left(e^{(n+1) i x}+e^{(-n+1) i x}\right) \\
& =\frac{1}{i \pi}\left[\frac{1}{n+1} e^{(n+1) i x}+\frac{1}{-n+1} e^{(-n+1) i x}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{2}{\pi}\left(\frac{1}{n+1} \sin (n+1) \pi / 2+\frac{1}{-n+1} \sin (1-n) \pi / 2\right) \tag{2}
\end{align*}
$$

Now, for n odd $n \pm 1$ is even and so $\sin (n \pm 1) \pi / 2$ is zero, for n even

$$
\begin{align*}
\sin (n+1) \pi / 2 & =\cos n \pi / 2=(-1)^{n / 2} \\
\sin (-n+1) \pi / 2 & =\cos n \pi / 2=(-1)^{n / 2} \tag{3}
\end{align*}
$$

since $\cos m \pi=(-1)^{m}$ and n is of the form $2 m$ if it is even. Thus, for n even

$$
\begin{equation*}
a_{n}=\frac{2}{\pi}\left(\frac{1}{n+1}+\frac{1}{-n+1}\right)(-1)^{n / 2}=\frac{4}{1-n^{2}} \tag{4}
\end{equation*}
$$

As for a_{0}

$$
\begin{equation*}
\left.a_{0}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} d x|\cos x|=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} d x \cos x=\frac{2}{\pi} \sin x\right]_{-\pi / 2}^{\pi / 2}=\frac{4}{\pi} \tag{5}
\end{equation*}
$$

Thus, changing n to $2 n$,

$$
\begin{equation*}
|\cos x|=\frac{2}{\pi}+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}} \cos 2 n x \tag{6}
\end{equation*}
$$

6. Ok, so follow the definition

$$
\begin{equation*}
\mathcal{L}\left[e^{a t}\right]=\int_{0}^{\infty} e^{a t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t=\frac{1}{s-a} \tag{7}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left.\mathcal{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=f(t) e^{-s t}\right]_{t=0}^{t=\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t=-f(0)+s \mathcal{L}[f(t)] \tag{8}
\end{equation*}
$$

\]

and finally, taking the Laplace transform of the equation

$$
\begin{equation*}
s F-1=F \tag{9}
\end{equation*}
$$

so $F=1 /(s-1)$ and hence $f(t)=\exp (-t)$.

[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

