## 231 FS 2007 q2/3 Outline Solution. ${ }^{1}$

## 13 February 2006

2. So the first part of this question is from the notes; as for the other part, we have

$$
\begin{equation*}
\mathbf{F}=3 x^{2} \mathbf{i}+2 y z \mathbf{j}+y^{2} \mathbf{k} \tag{1}
\end{equation*}
$$

Actually, it is easy to spot this is grad of $\phi=x^{3}+z y^{2}$, to actually calculate it if you don't spot it, we have

$$
\begin{equation*}
\frac{\partial}{\partial x} \phi=3 x^{2} \tag{2}
\end{equation*}
$$

so, integrting, $\phi=x^{3}+A(y, z)$, now, from that

$$
\begin{equation*}
\frac{\partial}{\partial y} A(y, z)=2 y z \tag{3}
\end{equation*}
$$

and hence $A(y, z)=y^{2} z+B(z)$ and finally, substituting again

$$
\begin{equation*}
\frac{\partial}{\partial z} B(z)=0 \tag{4}
\end{equation*}
$$

so $B(z)$ is a constant, which, wlog, we choose as zero. Now $\phi(1,-1,7)-\phi(0,1,2)=6$.
3. The cool part of this equation is the formula itself, where you can see the two different circles inside the torus in terms of the two angles $u$ and $v$. The surface integral is

$$
\begin{equation*}
A=\int_{S} d S=\int_{0}^{2 \pi} d u \int_{0}^{2 \pi} d v\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| \tag{5}
\end{equation*}
$$

From the question

$$
\begin{equation*}
\mathbf{r}=(a+b \cos v) \cos u \mathbf{i}+(a+b \cos v) \sin u \mathbf{j}+b \sin v \mathbf{k} \tag{6}
\end{equation*}
$$

hence

$$
\begin{align*}
& \frac{\partial \mathbf{r}}{\partial u}=-(a+b \cos v) \sin u \mathbf{i}+(a+b \cos v) \cos u \mathbf{j} \\
& \frac{\partial \mathbf{r}}{\partial v}=-b \sin v \cos u \mathbf{i}-b \sin v \sin u \mathbf{j}+b \cos v \mathbf{k} \tag{7}
\end{align*}
$$

and hence, with shorthand for the cosines and sines

$$
\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\left(a+b c_{2}\right) s_{1} & \left(a+b c_{2}\right) c_{1} & 0 \\
-b s_{2} c_{1} & -b s_{1} s_{2} & b c_{2}
\end{array}\right|
$$

[^0]\[

=\left($$
\begin{array}{c}
b\left(a+b c_{2}\right) c_{1} c_{2}  \tag{8}\\
-b\left(a+b c_{2}\right) s_{1} c_{2} \\
b\left(a+b c_{2}\right) s_{2}
\end{array}
$$\right)
\]

and so taking the length

$$
\begin{equation*}
\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right|^{2}=b^{2}\left(a+b c_{2}\right)^{2} \tag{9}
\end{equation*}
$$

where lots of simplifications have come from the Pythagorous theorem. Now the integral gives

$$
\begin{equation*}
A=4 \pi^{2} a b \tag{10}
\end{equation*}
$$

which is cool, it is the same as the surface area of a cylinder of radius $a$ and length $2 \pi b$ !


[^0]:    ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ ${ }^{\sim}$ houghton/231

